MM
Mohammed Mustafa
Author with expertise in Additive Manufacturing and 3D Printing Technologies
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
8
(50% Open Access)
Cited by:
1
h-index:
13
/
i10-index:
22
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Optimizing catalytic surface coatings in FDM-Printed sustainable materials: Innovations in chemical engineering

S. Raja et al.Dec 6, 2024
This research brings in the advancement of sustainable, high-performance engineering solutions where catalytic surface coatings are pursued to integrate with fused deposition modeling printed sustainable materials. The work is centered on optimization of catalytic coatings for higher efficiency and durability, which is innovatively linked with the advance chemical engineering. In probing the influence of different catalytic materials and deposition methods on FDM-printed substrates, we applied advanced surface functionalization, nano-engineering, and computational modeling techniques. Among other elements, this research approach utilized ANN with PSO algorithms in optimizing the parametric setting that best yielded high catalytic performance. The results obtained show considerable improvements in catalytic activity and the coating's lifetime, promising such applications in energy, environmental, and chemical industries. This study not only draws attention to the potential of FDM-printed sustainable materials but also demonstrates the potential of chemical engineering innovations for optimizing catalytic surface coatings toward the development of high-performance, sustainable technologies.
0

Optimization of sustainable polymer composites for surface metamorphosis in FDM processes

S. Raja et al.Dec 6, 2024
The demand for the development of sustainable manufacturing processes is enhanced by the necessity to optimize polymer composites, particularly in the context of fused deposition modeling (FDM). This research aims to enhance sustainable polymer composites to improve the surface metamorphosis during FDM processes. Various eco-friendly polymer matrices were integrated with novel composite reinforcements to evaluate their impact on surface quality, structural integrity, and the performance of FDM-printed components. Key surface features, including roughness (Ra), texture, and function, were quantified through both experimental and computational methods. The optimized composites led to a significant reduction in surface roughness, with Ra values improving by up to 45% compared to standard filaments. In addition, tensile strength was increased by 30% and flexural strength by 20% relative to unmodified polymer composites. Optimization strategies, guided by green chemistry principles and materials science, successfully enhanced surface finishes and functional properties, aligning with sustainability goals. The results demonstrate that optimized sustainable polymer composites can significantly improve the quality and performance of FDM prints, supporting more efficient and environmentally friendly manufacturing practices. This study contributes to advancing materials and processes in line with sustainability principles and surface engineering.
0

Surface functionalization of bio-based polymers in FDM: A pathway to enhanced material performance

S. Raja et al.Dec 2, 2024
Such rapid advancement places FDM as a transformative technology in additive manufacturing generally, and particularly into the context of the fabrication of complex geometries using bio-based polymers. However, with such inherent limitations regarding their mechanical and thermal properties, these face significant obstacles that need innovative approaches toward improvement. Surface functionalization is now considered one of the frontline strategies in the advanced improvements of the interfacial properties and durability of biobased polymers within FDM applications and represents opportunities for enhancing material performance. This paper discusses recent advances in surface functionalization methods, including plasma treatment, grafting, and nanocoatings applied to optimize PLA, PHA, and their composites functionality. These techniques tune the surface properties at the molecular level and consequently strengthen adhesion, minimize moisture intake, and enhance thermal stability toward improved mechanical properties and longer operating time for the printed parts. Our findings indicate that incorporating functionalization of the surface in the FDM process overcomes some of the challenges of bio-based polymers and achieves the targets of sustainable manufacturing. The work underlines contemporary methods and shows both their implications and practical effects, thus opening a path to future research and industrial applications in high-performance eco-friendly materials.