Advanced MaterialsVolume 24, Issue 30 p. 4144-4150 Communication A Leavening Strategy to Prepare Reduced Graphene Oxide Foams Zhiqiang Niu, Zhiqiang Niu School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, SingaporeSearch for more papers by this authorJun Chen, Jun Chen Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, Australian Institute of Innovative Materials, Innovation Campus, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, AustraliaSearch for more papers by this authorHuey Hoon Hng, Huey Hoon Hng School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, SingaporeSearch for more papers by this authorJan Ma, Jan Ma School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, SingaporeSearch for more papers by this authorXiaodong Chen, Corresponding Author Xiaodong Chen [email protected] School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, SingaporeSchool of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.Search for more papers by this author Zhiqiang Niu, Zhiqiang Niu School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, SingaporeSearch for more papers by this authorJun Chen, Jun Chen Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, Australian Institute of Innovative Materials, Innovation Campus, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, AustraliaSearch for more papers by this authorHuey Hoon Hng, Huey Hoon Hng School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, SingaporeSearch for more papers by this authorJan Ma, Jan Ma School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, SingaporeSearch for more papers by this authorXiaodong Chen, Corresponding Author Xiaodong Chen [email protected] School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, SingaporeSchool of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.Search for more papers by this author First published: 30 April 2012 https://doi.org/10.1002/adma.201200197Citations: 750Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Graphical Abstract Making graphene “bread”: A leavening strategy – involving hydrazine vapor – is used to prepare reduced graphene oxide (rGO) foams with porous and continuously cross-linked structures from freestanding compact GO layered films. Such rGO foams perform excellently as flexible electrode materials for supercapacitors and selective organic absorbents. Supporting Information Detailed facts of importance to specialist readers are published as ”Supporting Information”. Such documents are peer-reviewed, but not copy-edited or typeset. They are made available as submitted by the authors. Filename Description adma_201200197_sm_suppl.pdf428 KB suppl Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article. References 1 Q. M. Ji, I. Honma, S. M. Paek, M. Akada, J. P. Hill, A. Vinu, K. Ariga, Angew. Chem. Int. Ed. 2010, 49, 9737. 10.1002/anie.201004929 CASPubMedWeb of Science®Google Scholar 2 D. C. Wei, Y. Q. Liu, Adv. Mater. 2010, 22, 3225. 10.1002/adma.200904144 CASPubMedWeb of Science®Google Scholar 3 H. Chen, M. B. Müller, K. J. Gilmore, G. G. Wallace, D. Li, Adv. Mater. 2008, 20, 3557. 10.1002/adma.200800757 CASWeb of Science®Google Scholar 4 J. Kim, L. J. Cote, F. Kim, W. Yuan, K. R. Shull, J. X. Huang, J. Am. Chem. Soc. 2010, 132, 8180. 10.1021/ja102777p CASPubMedWeb of Science®Google Scholar 5 V. C. Tung, J. Kim, L. J. Cote, J. X. Huang, J. Am. Chem. Soc. 2011, 133, 9262. 10.1021/ja203464n CASPubMedWeb of Science®Google Scholar 6 S. Y. Yin, Y. Y. Zhang, J. H. Kong, C. J. Zou, C. M. Li, X. H. Lu, J. Ma, F. Y. C. Boey, X. D. Chen, ACS Nano 2011, 5, 3831. 10.1021/nn2001728 CASPubMedWeb of Science®Google Scholar 7 X. W. Yang, J. W. Zhu, L. Qiu, D. Li, Adv. Mater. 2011, 23, 2833. 10.1002/adma.201100261 CASPubMedWeb of Science®Google Scholar 8 D. W. Wang, F. Li, J. P. Zhao, W. C. Ren, Z. G. Chen, J. Tan, Z. S. Wu, I. Gentle, G. Q. Lu, H. M. Cheng, ACS Nano 2009, 3, 1745. 10.1021/nn900297m CASPubMedWeb of Science®Google Scholar 9 F. Liu, T. S. Seo, Adv. Funct. Mater. 2010, 20, 1930. 10.1002/adfm.201000287 CASWeb of Science®Google Scholar 10 L. H. Tang, Y. Wang, Y. M. Li, H. B. Feng, J. Lu, J. H. Li, Adv. Funct. Mater. 2009, 19, 2782. 10.1002/adfm.200900377 CASWeb of Science®Google Scholar 11 D. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Piner, G. H. B. Dommett, G. Evmenenko, S. T. Nguyen, R. S. Ruoff, Nature 2007, 448, 457. 10.1038/nature06016 CASPubMedWeb of Science®Google Scholar 12 Z. S. Wu, S. F. Pei, W. C. Ren, D. M. Tang, L. B. Gao, B. L. Liu, F. Li, C. Liu, H. M. Cheng, Adv. Mater. 2009, 21, 1756. 10.1002/adma.200802560 CASWeb of Science®Google Scholar 13 S. A. Hasan, J. L. Rigueur, R. R. Harl, A. J. Krejci, I. Gonzalo-Juan, B. R. Rogers, J. H. Dickerson, ACS Nano 2010, 4, 7367. 10.1021/nn102152x CASPubMedWeb of Science®Google Scholar 14 J. J. Xu, K. Wang, S. Z. Zu, B. H. Han, Z. X. Wei, ACS Nano 2010, 4, 5019. 10.1021/nn1006539 CASPubMedWeb of Science®Google Scholar 15 S. Biswas, L. T. Drzal, Chem. Mater. 2010, 22, 5667. 10.1021/cm101132g CASWeb of Science®Google Scholar 16 Y. Q. Sun, Q. O. Wu, G. Q. Shi, Energy Environ. Sci. 2011, 4, 1113. 10.1039/c0ee00683a CASWeb of Science®Google Scholar 17 Y. X. Xu, H. Bai, G. W. Lu, C. Li, G. Q. Shi, J. Am. Chem. Soc. 2008, 130, 5856. 10.1021/ja800745y CASPubMedWeb of Science®Google Scholar 18 X. Zhao, C. M. Hayner, M. C. Kung, H. H. Kung, ACS Nano 2011, 5, 8739. 10.1021/nn202710s CASPubMedWeb of Science®Google Scholar 19 Q. Su, Y. Y. Liang, X. L. Feng, K. Müllen, Chem. Commun. 2010, 46, 8279. 10.1039/c0cc02659j CASPubMedWeb of Science®Google Scholar 20 Z. J. Fan, J. Yan, L. J. Zhi, Q. Zhang, T. Wei, J. Feng, M. L. Zhang, W. Z. Qian, F. Wei, Adv. Mater. 2010, 22, 3723. 10.1002/adma.201001029 CASPubMedWeb of Science®Google Scholar 21 C. Y. Su, A. Y. Lu, Y. P. Xu, F. R. Chen, A. N. Khlobystov, L. J. Li, ACS Nano 2011, 5, 2332. 10.1021/nn200025p CASPubMedWeb of Science®Google Scholar 22 D. S. Yu, L. M. Dai, J. Phys. Chem. Lett. 2010, 1, 467. 10.1021/jz9003137 CASWeb of Science®Google Scholar 23 K. Ariga, T. Mori, J. P. Hill, Adv. Mater. 2012, 24, 158. 10.1002/adma.201102617 CASPubMedWeb of Science®Google Scholar 24 K. Sakakibara, J. P. Hill, K. Ariga, Small 2011, 7, 1288. 10.1002/smll.201002350 CASPubMedWeb of Science®Google Scholar 25 K. Ariga, A. Vinu, Y. Yamauchi, Q. M. Ji, J. P. Hill, Bull. Chem. Soc. Jpn. 2012, 85, 1. 10.1246/bcsj.20110162 CASWeb of Science®Google Scholar 26 M. Osada, T. Sasaki, Adv. Mater. 2012, 24, 210. 10.1002/adma.201103241 CASPubMedWeb of Science®Google Scholar 27 Q. Wu, Y. X. Xu, Z. Y. Yao, A. R. Liu, G. Q. Shi, ACS Nano 2010, 4, 1963. 10.1021/nn1000035 CASPubMedWeb of Science®Google Scholar 28 Y. X. Xu, Q. O. Wu, Y. Q. Sun, H. Bai, G. Q. Shi, ACS Nano 2010, 4, 7358. 10.1021/nn1027104 CASPubMedWeb of Science®Google Scholar 29 S. Park, N. Mohanty, J. W. Suk, A. Nagaraja, J. H. An, R. D. Piner, W. W. Cai, D. R. Dreyer, V. Berry, R. S. Ruoff, Adv. Mater. 2010, 22, 1736. 10.1002/adma.200903611 CASPubMedWeb of Science®Google Scholar 30 S. Biswas, L. T. Drzal, ACS Appl. Mater. Interfaces 2010, 2, 2293. 10.1021/am100343a CASPubMedWeb of Science®Google Scholar 31 Q. Su, S. P. Pang, V. Alijani, C. Li, X. L. Feng, K. Müllen, Adv. Mater. 2009, 21, 3191. 10.1002/adma.200803808 CASWeb of Science®Google Scholar 32 C. B. Liu, K. Wang, S. L. Luo, Y. H. Tang, L. Y. Chen, Small 2011, 7, 1203. 10.1002/smll.201002340 CASPubMedWeb of Science®Google Scholar 33 S. J. Guo, S. J. Dong, E. W. Wang, ACS Nano 2010, 4, 547. 10.1021/nn9014483 CASPubMedWeb of Science®Google Scholar 34 S. B. Yang, X. L. Feng, L. Wang, K. Tang, J. Maier, K. Müllen, Angew. Chem. Int. Ed. 2010, 49, 4795. 10.1002/anie.201001634 CASPubMedWeb of Science®Google Scholar 35 V. C. Tung, J. H. Huang, I. Tevis, F. Kim, J. Kim, C. W. Chu, S. I. Stupp, J. X. Huang, J. Am. Chem. Soc. 2011, 133, 4940. 10.1021/ja1103734 CASPubMedWeb of Science®Google Scholar 36 L. J. Cote, R. Cruz-Silva, J. X. Huang, J. Am. Chem. Soc. 2009, 131, 11027. 10.1021/ja902348k CASPubMedWeb of Science®Google Scholar 37 X. H. Cao, Y. M. Shi, W. H. Shi, G. Lu, X. Huang, Q. Y. Yan, Q. C. Zhang, H. Zhang, Small 2011, 7, 3163. 10.1002/smll.201100990 CASPubMedWeb of Science®Google Scholar 38 J. Y. Luo, H. D. Jang, T. Sun, L. Xiao, Z. He, A. P. Katsoulidis, M. G. Kanatzidis, J. M. Gibson, J. X. Huang, ACS Nano 2011, 5, 8943. 10.1021/nn203115u CASPubMedWeb of Science®Google Scholar 39 Y. X. Xu, K. X. Sheng, C. Li, G. Q. Shi, ACS Nano 2010, 4, 4324. 10.1021/nn101187z CASPubMedWeb of Science®Google Scholar 40 Z. P. Chen, W. C. Ren, L. B. Gao, B. L. Liu, S. F. Pei, H. M. Cheng, Nat. Mater. 2011, 10, 424. 10.1038/nmat3001 CASPubMedWeb of Science®Google Scholar 41 S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, R. S. Ruoff, Carbon 2007, 45, 1558. 10.1016/j.carbon.2007.02.034 CASWeb of Science®Google Scholar 42 X. F. Gao, J. Jang, S. Nagase, J. Phys. Chem. C 2010, 114, 832. 10.1021/jp909284g CASWeb of Science®Google Scholar 43 D. R. Dreyer, S. Park, C. W. Bielawski, R. S. Ruoff, Chem. Soc. Rev. 2010, 39, 228. 10.1039/B917103G CASPubMedWeb of Science®Google Scholar 44 S. J. An, Y. W. Zhu, S. H. Lee, M. D. Stoller, T. Emilsson, S. Park, A. Velamakanni, J. H. An, R. S. Ruoff, J. Phys. Chem. Lett. 2010, 1, 1259. 10.1021/jz100080c CASWeb of Science®Google Scholar 45 W. J. Ma, L. Song, R. Yang, T. H. Zhang, Y. C. Zhao, L. F. Sun, Y. Ren, D. F. Liu, L. F. Liu, J. Shen, Z. X. Zhang, Y. J. Xiang, W. Y. Zhou, S. S. Xie, Nano Lett. 2007, 7, 2307. 10.1021/nl070915c CASPubMedWeb of Science®Google Scholar 46 S. Stankovich, R. D. Piner, X. Q. Chen, N. Q. Wu, S. T. Nguyen, R. S. Ruoff, J. Mater. Chem. 2006, 16, 155. 10.1039/B512799H CASWeb of Science®Google Scholar 47 P. G. Ren, D. X. Yan, X. Ji, T. Chen, Z. M. Li, Nanotechnology 2011, 22, 055705. 10.1088/0957-4484/22/5/055705 CASPubMedWeb of Science®Google Scholar 48 Q. Y. He, H. G. Sudibya, Z. Y. Yin, S. X. Wu, H. Li, F. Boey, W. Huang, P. Chen, H. Zhang, ACS Nano 2010, 4, 3201. 10.1021/nn100780v CASPubMedWeb of Science®Google Scholar 49 F. Kim, J. Y. Luo, R. Cruz-Silva, L. J. Cote, K. Sohn, J. X. Huang, Adv. Funct. Mater. 2010, 20, 2867. 10.1002/adfm.201000736 CASWeb of Science®Google Scholar 50 A. J. Bard, L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications, Wiley, New York 1980. Google Scholar 51 Y. Zhang, H. Feng, X. B. Wu, L. Z. Wang, A. Q. Zhang, T. C. Xia, H. C. Dong, X. F. Li, L. S. Zhang, Int. J. Hydrogen Energy 2009, 34, 4889. 10.1016/j.ijhydene.2009.04.005 CASWeb of Science®Google Scholar 52 Z. Q. Niu, W. Y. Zhou, J. Chen, G. X. Feng, H. Li, W. J. Ma, J. Z. Li, H. B. Dong, Y. Ren, D. Zhao, S. S. Xie, Energy Environ. Sci. 2011, 4, 1440. 10.1039/c0ee00261e CASWeb of Science®Google Scholar 53 Y. Chen, X. O. Zhang, D. C. Zhang, P. Yu, Y. W. Ma, Carbon 2011, 49, 573. 10.1016/j.carbon.2010.09.060 CASWeb of Science®Google Scholar 54 Y. Chen, X. Zhang, P. Yu, Y. W. Ma, J. Power Sources 2010, 195, 3031. 10.1016/j.jpowsour.2009.11.057 CASWeb of Science®Google Scholar 55 C. T. Hsieh, Y. W. Chou, W. Y. Chen, J. Solid State Chem. 2008, 12, 663. CASWeb of Science®Google Scholar 56 J. K. Yuan, X. G. Liu, O. Akbulut, J. Q. Hu, S. L. Suib, J. Kong, F. Stellacci, Nat. Nanotechnol. 2008, 3, 332. 10.1038/nnano.2008.136 CASPubMedWeb of Science®Google Scholar Citing Literature Volume24, Issue30Special Issue: Materials Research at Nanyang Technological University, SingaporeAugust 8, 2012Pages 4144-4150 ReferencesRelatedInformation