LM
Lane Martin
Author with expertise in Lead-free Piezoelectric Materials
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
29
(83% Open Access)
Cited by:
12,301
h-index:
73
/
i10-index:
229
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Conformable amplified lead zirconate titanate sensors with enhanced piezoelectric response for cutaneous pressure monitoring

Canan Dağdeviren et al.Aug 5, 2014
The ability to measure subtle changes in arterial pressure using devices mounted on the skin can be valuable for monitoring vital signs in emergency care, detecting the early onset of cardiovascular disease and continuously assessing health status. Conventional technologies are well suited for use in traditional clinical settings, but cannot be easily adapted for sustained use during daily activities. Here we introduce a conformal device that avoids these limitations. Ultrathin inorganic piezoelectric and semiconductor materials on elastomer substrates enable amplified, low hysteresis measurements of pressure on the skin, with high levels of sensitivity (~0.005 Pa) and fast response times (~0.1 ms). Experimental and theoretical studies reveal enhanced piezoelectric responses in lead zirconate titanate that follow from integration on soft supports as well as engineering behaviours of the associated devices. Calibrated measurements of pressure variations of blood flow in near-surface arteries demonstrate capabilities for measuring radial artery augmentation index and pulse pressure velocity. The development of more sensitive tools for physiological monitoring presents obvious advantages in health-care and diagnostic assessment. Here, the authors present a thin, skin-like sensor that uses enhanced responses in lead zirconate titanate for monitoring arterial pressure waves.
0
Paper
Citation822
0
Save
0

Observation of polar vortices in oxide superlattices

Ajay Yadav et al.Jan 26, 2016
In material systems with several interacting degrees of freedom, the complex interplay between these factors can give rise to exotic phases; now superlattices consisting of alternating layers of PbTiO3 and SrTiO3 are found to exhibit an unusual form of ferroelectric ordering in the PbTiO3 layers, in which the electric dipoles arrange themselves into regular, ordered arrays of vortex–antivortex structures. In material systems with several interacting degrees of freedom (such as spin, charge and lattice distortions), the complex interplay between these factors can give rise to exotic phases. A vivid example of such behaviour has been identified by Ramamoorthy Ramesh and colleagues in superlattices consisting of alternating layers of PbTiO3 and SrTiO3. They observe the formation of an unusual form of ferroelectric ordering in the PbTiO3 layers, in which the electric dipoles arrange themselves into regular vortex–antivortex array structures, suggesting potential routes for further tuning and enhancing the properties of these versatile oxide materials. The complex interplay of spin, charge, orbital and lattice degrees of freedom provides a plethora of exotic phases and physical phenomena1,2,3,4,5. In recent years, complex spin topologies have emerged as a consequence of the electronic band structure and the interplay between spin and spin–orbit coupling in materials6,7. Here we produce complex topologies of electrical polarization—namely, nanometre-scale vortex–antivortex (that is, clockwise–anticlockwise) arrays that are reminiscent of rotational spin topologies6—by making use of the competition between charge, orbital and lattice degrees of freedom in superlattices of alternating lead titanate and strontium titanate layers. Atomic-scale mapping of the polar atomic displacements by scanning transmission electron microscopy reveals the presence of long-range ordered vortex–antivortex arrays that exhibit nearly continuous polarization rotation. Phase-field modelling confirms that the vortex array is the low-energy state for a range of superlattice periods. Within this range, the large gradient energy from the vortex structure is counterbalanced by the corresponding large reduction in overall electrostatic energy (which would otherwise arise from polar discontinuities at the lead titanate/strontium titanate interfaces) and the elastic energy associated with epitaxial constraints and domain formation. These observations have implications for the creation of new states of matter (such as dipolar skyrmions, hedgehog states) and associated phenomena in ferroic materials, such as electrically controllable chirality.
0

Observation of room-temperature polar skyrmions

Sujit Das et al.Apr 1, 2019
Complex topological configurations are fertile ground for exploring emergent phenomena and exotic phases in condensed-matter physics. For example, the recent discovery of polarization vortices and their associated complex-phase coexistence and response under applied electric fields in superlattices of (PbTiO3)n/(SrTiO3)n suggests the presence of a complex, multi-dimensional system capable of interesting physical responses, such as chirality, negative capacitance and large piezo-electric responses1-3. Here, by varying epitaxial constraints, we discover room-temperature polar-skyrmion bubbles in a lead titanate layer confined by strontium titanate layers, which are imaged by atomic-resolution scanning transmission electron microscopy. Phase-field modelling and second-principles calculations reveal that the polar-skyrmion bubbles have a skyrmion number of +1, and resonant soft-X-ray diffraction experiments show circular dichroism, confirming chirality. Such nanometre-scale polar-skyrmion bubbles are the electric analogues of magnetic skyrmions, and could contribute to the advancement of ferroelectrics towards functionalities incorporating emergent chirality and electrically controllable negative capacitance.
Load More