YH
Yezi Hu
Author with expertise in Chemistry of Actinide and Lanthanide Elements
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
5
(20% Open Access)
Cited by:
223
h-index:
19
/
i10-index:
22
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Controllable Synthesis of Ca-Mg-Al Layered Double Hydroxides and Calcined Layered Double Oxides for the Efficient Removal of U(VI) from Wastewater Solutions

Yidong Zou et al.Nov 3, 2016
Novel rod-like ternary nanoscale layered double hydroxides (Ca-Mg-Al-LDH) and their bimetal derivatives (Ca-Mg-Al-LDOx, x: 200, 300, 400, 500, and 600 °C) were fabricated with a simple-green hydrothermal and calicination process. The interaction mechanism and adsorption property of U(VI) on Ca-Mg-Al-LDH and Ca-Mg-Al-LDOx were investigated by a batch technique and spectroscopy analysis, and the results indicated that U(VI) could form strong and stable surface complexes on Ca-Mg-Al-LDH and Ca-Mg-Al-LDOx surfaces. The adsorption capacity of U(VI) on various adsorbents could be controlled and adjusted through changing the calcination temperature, which was attributed to the different contents of various metal–oxide bonds (e.g., Ca–O, Mg–O, and Al–O). The adsorption capacities of U(VI) on these adsorbents were in the order of Ca-Mg-Al-LDO500 (486.8 mg/g) > Ca-Mg-Al-LDO600 (373.4 mg/g) > Ca-Mg-Al-LDO400 (292.5 mg/g) > Ca-Mg-Al-LDO300 (260.0 mg/g) > Ca-Mg-Al-LDO200 (223.5 mg/g) > Ca-Mg-Al-LDH (132.5 mg/g), which might be attributed to more active surface sites and abundant "Ca–O and Al–O" with the increase of calcination temperature. The results of kinetic and thermodynamic studies demonstrated that the adsorption was a spontaneous and endothermic chemical process, and the better fitted Sips model revealed that the adsorption reaction was multilayer adsorption at low concentration of U(VI) and monolayer adsorption at high concentration of U(VI). This study provided highlights on the interaction mechanism of U(VI) with various metal–oxide bonds, and it could play an important role for the controllable adsorption capacity and effcient application in environmental remediation.
0

Ultra-highly efficient enrichment of uranium from seawater via studtite nanodots growth-elution cycle

Gao Peng et al.Aug 7, 2024
Consecutive uranium extraction from seawater is a promising approach to secure the long-term supply of uranium and the sustainability of nuclear energy. Here, we report an ultra-highly efficient strategy via studtite nanodots growth with impressive uranyl uptake capacity of ~ 154.50 mg/g from natural seawater in 12 consecutive days (i.e., average for ~ 12.875 mg/g/day). Uranyl can be extracted as studtite under visible light via the reaction between the adsorbed uranyl and the photogenerated H2O2 with imine-based Covalent-Organic Framework photocatalysts. In detail, over Tp-Bpy, Tp-Bpy-2 and Tp-Py with multiple uranyl chelating sites, uranyl is found extracted as studtite nanodots which can be eluted readily, while over Tp-Bd and Tb-Bpy, uranyl is transformed into studtite nanorods that is more inert for elution. Abundant chelating sites of uranyl via structural regulation of COF photocatalysts are proved to facilitate the formation and efficient elution of studtite nanodots. The continuous extraction of uranium from seawater is desired to sustain nuclear power technology and the development of uranyl up-recycle approaches remain a challenge. Here the authors report the uranyl consecutive extraction as studtite nanodots under visible light employing covalent-organic frameworks as photocatalysts.
0
Paper
Citation3
0
Save