HC
Henry Curran
Author with expertise in Chemical Kinetics of Combustion Processes
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
37
(65% Open Access)
Cited by:
13,337
h-index:
89
/
i10-index:
249
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

A Comprehensive Modeling Study of n-Heptane Oxidation

Henry Curran et al.Jul 1, 1998
A detailed chemical kinetic mechanism has been developed and used to study the oxidation of n-heptane in flow reactors, shock tubes, and rapid compression machines. Over the series of experiments numerically investigated, the initial pressure ranged from 1–42 atm, the temperature from 550–1700 K, the equivalence ratio from 0.3–1.5, and nitrogen-argon dilution from 70–99%. The combination of ignition delay time and species composition data provide for a stringent test of the chemical kinetic mechanism. The reactions are classed into various types, and the reaction rate constants are given together with an explanation of how the rate constants were obtained. Experimental results from the literature of ignition behind reflected shock waves and in a rapid compression machine were used to develop and validate the reaction mechanism at both low and high temperatures. Additionally, species composition data from a variable pressure flow reactor and a jet-stirred reactor were used to help complement and refine the low-temperature portions of the reaction mechanism. A sensitivity analysis was performed for each of the combustion environments. This analysis showed that the low-temperature chemistry is very sensitive to the formation of stable olefin species from hydroperoxy-alkyl radicals and to the chain-branching steps involving ketohydroperoxide molecules.
0

A comprehensive modeling study of iso-octane oxidation

Henry Curran et al.May 1, 2002
A detailed chemical kinetic mechanism has been developed and used to study the oxidation of iso-octane in a jet-stirred reactor, flow reactors, shock tubes and in a motored engine. Over the series of experiments investigated, the initial pressure ranged from 1 to 45 atm, the temperature from 550 K to 1700 K, the equivalence ratio from 0.3 to 1.5, with nitrogen-argon dilution from 70% to 99%. This range of physical conditions, together with the measurements of ignition delay time and concentrations, provide a broad-ranging test of the chemical kinetic mechanism. This mechanism was based on our previous modeling of alkane combustion and, in particular, on our study of the oxidation of n-heptane. Experimental results of ignition behind reflected shock waves were used to develop and validate the predictive capability of the reaction mechanism at both low and high temperatures. Moreover, species’ concentrations from flow reactors and a jet-stirred reactor were used to help complement and refine the low and intermediate temperature portions of the reaction mechanism, leading to good predictions of intermediate products in most cases. In addition, a sensitivity analysis was performed for each of the combustion environments in an attempt to identify the most important reactions under the relevant conditions of study.
0

An experimental and detailed chemical kinetic modeling study of hydrogen and syngas mixture oxidation at elevated pressures

Alan Kéromnès et al.Mar 13, 2013
The oxidation of syngas mixtures was investigated experimentally and simulated with an updated chemical kinetic model. Ignition delay times for H2/CO/O2/N2/Ar mixtures have been measured using two rapid compression machines and shock tubes at pressures from 1 to 70 bar, over a temperature range of 914–2220 K and at equivalence ratios from 0.1 to 4.0. Results show a strong dependence of ignition times on temperature and pressure at the end of the compression; ignition delays decrease with increasing temperature, pressure, and equivalence ratio. The reactivity of the syngas mixtures was found to be governed by hydrogen chemistry for CO concentrations lower than 50% in the fuel mixture. For higher CO concentrations, an inhibiting effect of CO was observed. Flame speeds were measured in helium for syngas mixtures with a high CO content and at elevated pressures of 5 and 10 atm using the spherically expanding flame method. A detailed chemical kinetic mechanism for hydrogen and H2/CO (syngas) mixtures has been updated, rate constants have been adjusted to reflect new experimental information obtained at high pressures and new rate constant values recently published in the literature. Experimental results for ignition delay times and flame speeds have been compared with predictions using our newly revised chemical kinetic mechanism, and good agreement was observed. In the mechanism validation, particular emphasis is placed on predicting experimental data at high pressures (up to 70 bar) and intermediate- to high-temperature conditions, particularly important for applications in internal combustion engines and gas turbines. The reaction sequence H2+HO˙2↔H˙+H2O2 followed by H2O2(+M)↔O˙H+O˙H(+M) was found to play a key role in hydrogen ignition under high-pressure and intermediate-temperature conditions. The rate constant for H2+HO˙2 showed strong sensitivity to high-pressure ignition times and has considerable uncertainty, based on literature values. A rate constant for this reaction is recommended based on available literature values and on our mechanism validation.
0

A comprehensive chemical kinetic combustion model for the four butanol isomers

S. Sarathy et al.Feb 11, 2012
Alcohols, such as butanol, are a class of molecules that have been proposed as a bio-derived alternative or blending agent for conventional petroleum derived fuels. The structural isomer in traditional “bio-butanol” fuel is 1-butanol, but newer conversion technologies produce iso-butanol and 2-butanol as fuels. Biological pathways to higher molecular weight alcohols have also been identified. In order to better understand the combustion chemistry of linear and branched alcohols, this study presents a comprehensive chemical kinetic model for all the four isomers of butanol (e.g., 1-, 2-, iso- and tert-butanol). The proposed model includes detailed high-temperature and low-temperature reaction pathways with reaction rates assigned to describe the unique oxidation features of linear and branched alcohols. Experimental validation targets for the model include low pressure premixed flat flame species profiles obtained using molecular beam mass spectrometry (MBMS), premixed laminar flame velocity, rapid compression machine and shock tube ignition delay, and jet-stirred reactor species profiles. The agreement with these various data sets spanning a wide range of temperatures and pressures is reasonably good. The validated chemical kinetic model is used to elucidate the dominant reaction pathways at the various pressures and temperatures studied. At low-temperature conditions, the reaction of 1-hydroxybutyl with O2 was important in controlling the reactivity of the system, and for correctly predicting C4 aldehyde profiles in low pressure premixed flames and jet-stirred reactors. Enol–keto isomerization reactions assisted by radicals and formic acid were also found to be important in converting enols to aldehydes and ketones under certain conditions. Structural features of the four different butanol isomers leading to differences in the combustion properties of each isomer are thoroughly discussed.
0

An experimental and chemical kinetic modeling study of 1,3-butadiene combustion: Ignition delay time and laminar flame speed measurements

Chong‐Wen Zhou et al.Sep 10, 2018
Ignition delay times for 1,3-butadiene oxidation were measured in five different shock tubes and in a rapid compression machine (RCM) at thermodynamic conditions relevant to practical combustors. The ignition delay times were measured at equivalence ratios of 0.5, 1.0, and 2.0 in ‘air’ at pressures of 10, 20 and 40 atm in both the shock tubes and in the RCM. Additional measurements were made at equivalence ratios of 0.3, 0.5, 1.0 and 2.0 in argon, at pressures of 1, 2 and 4 atm in a number of different shock tubes. Laminar flame speeds were measured at unburnt temperatures of 295 K, 359 K and 399 K at atmospheric pressure in the equivalence ratio range of 0.6–1.7, and at a pressure of 5 atm at equivalence ratios in the range 0.6–1.4. These experimental data were then used as validation targets for a newly developed detailed chemical kinetic mechanism for 1,3-butadiene oxidation. A detailed chemical kinetic mechanism (AramcoMech 3.0) has been developed to describe the combustion of 1,3-butadiene and is validated by a comparison of simulation results to the new experimental measurements. Important reaction classes highlighted via sensitivity analyses at different temperatures include: (a) ȮH radical addition to the double bonds on 1,3-butadiene and their subsequent reactions. The branching ratio for addition to the terminal and central double bonds is important in determining the reactivity at low-temperatures. The alcohol-alkene radical adducts that are subsequently formed can either react with HȮ2 radicals in the case of the resonantly stabilized radicals or O2 for other radicals. (b) HȮ2 radical addition to the double bonds in 1,3-butadiene and their subsequent reactions. This reaction class is very important in determining the fuel reactivity at low and intermediate temperatures (600–900 K). Four possible addition reactions have been considered. (c) 3Ö atom addition to the double bonds in 1,3-butadiene is very important in determining fuel reactivity at intermediate to high temperatures (> 800 K). In this reaction class, the formation of two stable molecules, namely CH2O + allene, inhibits reactivity whereas the formation of two radicals, namely Ċ2H3 and ĊH2CHO, promotes reactivity. (d) Ḣ atom addition to the double bonds in 1,3-butadiene is very important in the prediction of laminar flame speeds. The formation of ethylene and a vinyl radical promotes reactivity and it is competitive with H-atom abstraction by Ḣ atoms from 1,3-butadiene to form the resonantly stabilized Ċ4H5-i radical and H2 which inhibits reactivity. Ab initio chemical kinetics calculations were carried out to determine the thermochemistry properties and rate constants for some of the important species and reactions involved in the model development. The present model is a decent first model that captures most of the high-temperature IDTs and flame speeds quite well, but there is room for considerable improvement especially for the lower temperature chemistry before a robust model is developed.
0

The oxidation of 2-butene: A high pressure ignition delay, kinetic modeling study and reactivity comparison with isobutene and 1-butene

Yang Li et al.Jun 26, 2016
Butenes are intermediates ubiquitously formed by decomposition and oxidation of larger hydrocarbons (e.g. alkanes) or alcohols present in conventional or reformulated fuels. In this study, a series of novel ignition delay time (IDT) experiments of trans-2-butene were performed in a high-pressure shock tube (HPST) and in a rapid compression machine (RCM) under conditions of relevance to practical combustors. This is the first IDT data of trans-2-butene taken at engine relevant conditions, and the combination of HPST and RCM results greatly expands the range of data available for the oxidation of trans-2-butene to higher pressures (10–50 atm), lower temperatures (670–1350 K) and a wide range of equivalence ratios (0.5–2.0). A comprehensive chemical kinetic mechanism has simultaneously been developed to describe the combustion of trans-2-butene. It has been validated using the IDT data measured here in addition to a large variety of literature data: jet-stirred reactor (JSR) speciation data, premixed flame speciation data, flow reactor speciation data and laminar flame speed data. Moreover, the reactivity of trans-2-butene is compared to that of the other two isomers, 1-butene and isobutene, and these comparisons are discussed. Important reactions are highlighted via flux and sensitivity analyses and help explain the differences in reactivity among the butene isomers.
Load More