SW
Shengjin Wang
Author with expertise in Image Feature Retrieval and Recognition Techniques
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
19
(37% Open Access)
Cited by:
6,348
h-index:
51
/
i10-index:
146
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Scalable Person Re-identification: A Benchmark

Liang Zheng et al.Dec 1, 2015
This paper contributes a new high quality dataset for person re-identification, named "Market-1501". Generally, current datasets: 1) are limited in scale, 2) consist of hand-drawn bboxes, which are unavailable under realistic settings, 3) have only one ground truth and one query image for each identity (close environment). To tackle these problems, the proposed Market-1501 dataset is featured in three aspects. First, it contains over 32,000 annotated bboxes, plus a distractor set of over 500K images, making it the largest person re-id dataset to date. Second, images in Market-1501 dataset are produced using the Deformable Part Model (DPM) as pedestrian detector. Third, our dataset is collected in an open system, where each identity has multiple images under each camera. As a minor contribution, inspired by recent advances in large-scale image search, this paper proposes an unsupervised Bag-of-Words descriptor. We view person re-identification as a special task of image search. In experiment, we show that the proposed descriptor yields competitive accuracy on VIPeR, CUHK03, and Market-1501 datasets, and is scalable on the large-scale 500k dataset.
0

Weakly Supervised Object Localization with Progressive Domain Adaptation

Dong Li et al.Jun 1, 2016
We address the problem of weakly supervised object localization where only image-level annotations are available for training. Many existing approaches tackle this problem through object proposal mining. However, a substantial amount of noise in object proposals causes ambiguities for learning discriminative object models. Such approaches are sensitive to model initialization and often converge to an undesirable local minimum. In this paper, we address this problem by progressive domain adaptation with two main steps: classification adaptation and detection adaptation. In classification adaptation, we transfer a pre-trained network to our multi-label classification task for recognizing the presence of a certain object in an image. In detection adaptation, we first use a mask-out strategy to collect class-specific object proposals and apply multiple instance learning to mine confident candidates. We then use these selected object proposals to fine-tune all the layers, resulting in a fully adapted detection network. We extensively evaluate the localization performance on the PASCAL VOC and ILSVRC datasets and demonstrate significant performance improvement over the state-of-the-art methods.
0

Linkage Based Face Clustering via Graph Convolution Network

Zhongdao Wang et al.Jun 1, 2019
In this paper, we present an accurate and scalable approach to the face clustering task. We aim at grouping a set of faces by their potential identities. We formulate this task as a link prediction problem: a link exists between two faces if they are of the same identity. The key idea is that we find the local context in the feature space around an instance (face) contains rich information about the linkage relationship between this instance and its neighbors. By constructing sub-graphs around each instance as input data, which depict the local context, we utilize the graph convolution network (GCN) to perform reasoning and infer the likelihood of linkage between pairs in the sub-graphs. Experiments show that our method is more robust to the complex distribution of faces than conventional methods, yielding favorably comparable results to state-of-the-art methods on standard face clustering benchmarks, and is scalable to large datasets. Furthermore, we show that the proposed method does not need the number of clusters as prior, is aware of noises and outliers, and can be extended to a multi-view version for more accurate clustering accuracy.
0

Packing and Padding: Coupled Multi-index for Accurate Image Retrieval

Liang Zheng et al.Jun 1, 2014
In Bag-of-Words (BoW) based image retrieval, the SIFT visual word has a low discriminative power, so false positive matches occur prevalently. Apart from the information loss during quantization, another cause is that the SIFT feature only describes the local gradient distribution. To address this problem, this paper proposes a coupled Multi-Index (c-MI) framework to perform feature fusion at indexing level. Basically, complementary features are coupled into a multi-dimensional inverted index. Each dimension of c-MI corresponds to one kind of feature, and the retrieval process votes for images similar in both SIFT and other feature spaces. Specifically, we exploit the fusion of local color feature into c-MI. While the precision of visual match is greatly enhanced, we adopt Multiple Assignment to improve recall. The joint cooperation of SIFT and color features significantly reduces the impact of false positive matches. Extensive experiments on several benchmark datasets demonstrate that c-MI improves the retrieval accuracy significantly, while consuming only half of the query time compared to the baseline. Importantly, we show that c-MI is well complementary to many prior techniques. Assembling these methods, we have obtained an mAP of 85.8% and N-S score of 3.85 on Holidays and Ukbench datasets, respectively, which compare favorably with the state-of-the-arts.
0
Citation184
0
Save
Load More