JM
Jin Miyawaki
Author with expertise in Biomedical Applications of Graphene Nanomaterials
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
6
(0% Open Access)
Cited by:
1,399
h-index:
47
/
i10-index:
126
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Preparation of Nitrogen-Doped Graphene Sheets by a Combined Chemical and Hydrothermal Reduction of Graphene Oxide

Donghui Long et al.Sep 23, 2010
Nitrogen-doped graphene sheets were prepared through a hydrothermal reduction of colloidal dispersions of graphite oxide in the presence of hydrazine and ammonia at pH of 10. The effect of hydrothermal temperature on the structure, morphology, and surface chemistry of as-prepared graphene sheets were investigated though XRD, N(2) adsorption, solid-state (13)C NMR, SEM, TEM, and XPS characterizations. Oxygen reduction and nitrogen doping were achieved simultaneously under the hydrothermal reaction. Up to 5% nitrogen-doped graphene sheets with slightly wrinkled and folded feature were obtained at the relative low hydrothermal temperature. With the increase of hydrothermal temperature, the nitrogen content decreased slightly and more pyridinic N incorporated into the graphene network. Meanwhile, a jellyfish-like graphene structure was formed by self-organization of graphene sheets at the hydrothermal temperature of 160 °C. Further increase of the temperature to 200 °C, graphene sheets could self-aggregate into agglomerate particles but still contained doping level of 4 wt % N. The unique hydrothermal environment should play an important role in the nitrogen doping and the jellyfish-like graphene formation. This simple hydrothermal method could provide the synthesis of nitrogen-doped graphene sheets in large scale for various practical applications.
0

Drug-Loaded Carbon Nanohorns: Adsorption and Release of Dexamethasone in Vitro

Tatsuya Murakami et al.Sep 24, 2004
Single-wall carbon nanohorns (SWNHs) are recently discovered nanostructured spherical aggregates of graphitic tubes. The unique physicochemical properties of SWNHs, including their large surface area, suggest their possible utility as carriers in drug delivery systems. Here we investigated the in vitro binding and release of the antiinflammatory glucocorticoid dexamethasone (DEX) by as-grown SWNHs and their oxidized form, oxSWNHs. Adsorption analyses using [3H]-DEX determined the amount of DEX adsorbed by oxSWNHs to be 200 mg for each gram of oxSWNHs in 0.5 mg/mL of DEX solution, which was approximately 6 times larger than that obtained for as-grown SWNHs. Adsorption kinetics indicated that oxSWNHs had higher affinity for DEX than as-grown SWNHs. Treatment of oxSWNHs at 1200 degrees C under H2, which removed the oxygen-containing functional groups on oxSWNHs, did not diminish the high affinity for DEX, suggesting that oxygen-containing functional groups have little contribution for the affinity. DEX-oxSWNH complexes exhibited sustained release of DEX into phosphate-buffered saline (pH 7.4) at 37 degrees C and more rapid biphasic release into culture medium. The biological integrity of the released DEX form was confirmed by activation of glucocorticoid response element-driven transcription in mouse bone marrow stromal ST2 cells and induction of alkaline phosphatase in mouse osteoblastic MC3T3-E1 cells. Notably, synthesis of SWNHs does not require a metal catalyst, the toxicity of which could become problematical in clinical use, and no cytotoxicity was observed in cells cultured in the presence of oxSWNHs under our conditions. Taken together, these observations highlight the potential utility of SWNHs in drug delivery systems.