EP
Evangelos Papalexakis
Author with expertise in Tensor Decompositions and Applications in Multilinear Algebra
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
7
(43% Open Access)
Cited by:
2,073
h-index:
32
/
i10-index:
71
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Tensor Decomposition for Signal Processing and Machine Learning

Nicholas Sidiropoulos et al.Apr 3, 2017
Tensors or {\em multi-way arrays} are functions of three or more indices $(i,j,k,\cdots)$ -- similar to matrices (two-way arrays), which are functions of two indices $(r,c)$ for (row,column). Tensors have a rich history, stretching over almost a century, and touching upon numerous disciplines; but they have only recently become ubiquitous in signal and data analytics at the confluence of signal processing, statistics, data mining and machine learning. This overview article aims to provide a good starting point for researchers and practitioners interested in learning about and working with tensors. As such, it focuses on fundamentals and motivation (using various application examples), aiming to strike an appropriate balance of breadth {\em and depth} that will enable someone having taken first graduate courses in matrix algebra and probability to get started doing research and/or developing tensor algorithms and software. Some background in applied optimization is useful but not strictly required. The material covered includes tensor rank and rank decomposition; basic tensor factorization models and their relationships and properties (including fairly good coverage of identifiability); broad coverage of algorithms ranging from alternating optimization to stochastic gradient; statistical performance analysis; and applications ranging from source separation to collaborative filtering, mixture and topic modeling, classification, and multilinear subspace learning.
0

All You Need Is Low (Rank)

Negin Entezari et al.Jan 20, 2020
Recent studies have demonstrated that machine learning approaches like deep learning methods are easily fooled by adversarial attacks. Recently, a highly-influential study examined the impact of adversarial attacks on graph data and demonstrated that graph embedding techniques are also vulnerable to adversarial attacks. Fake users on social media and fake product reviews are examples of perturbations in graph data that are realistic counterparts of the adversarial models proposed. Graphs are widely used in a variety of domains and it is highly important to develop graph analysis techniques that are robust to adversarial attacks. One of the recent studies on generating adversarial attacks for graph data is Nettack. The Nettack model has shown to be very successful in deceiving the Graph Convolutional Network (GCN) model. Nettack is also transferable to other node classification approaches e.g. node embeddings. In this paper, we explore the properties of Nettack perturbations, in search for effective defenses against them. Our first finding is that Nettack demonstrates a very specific behavior in the spectrum of the graph: only high-rank (low-valued) singular components of the graph are affected. Following that insight, we show that a low-rank approximation of the graph, that uses only the top singular components for its reconstruction, can greatly reduce the effects of Nettack and boost the performance of GCN when facing adversarial attacks. Indicatively, on the CiteSeer dataset, our proposed defense mechanism is able to reduce the success rate of Nettack from 98% to 36%. Furthermore, we show that tensor-based node embeddings, which by default project the graph into a low-rank subspace, are robust against Nettack perturbations. Lastly, we propose LowBlow, a low-rank adversarial attack which is able to affect the classification performance of both GCN and tensor-based node embeddings and we show that the low-rank attack is noticeable and making it unnoticeable results in a high-rank attack.
0

Kernel Ridge Regression in Predicting Railway Crossing Accidents

Ethan Villalobos et al.May 13, 2024
Abstract Expanding on the insights from our initial investigation into railway accident patterns, this paper delves deeper into the predictive capabilities of machine learning to forecast potential accident trends in railway crossings. Focusing on critical factors such as “Highway User Position” and “Equipment Involved,” we integrate Kernel Ridge Regression (KRR) models tailored to distinct clusters, as well as a global model for the entire dataset. These models, trained on historical data, discern patterns and correlations that might elude traditional statistical methods. Our findings are compelling: certain clusters, despite limited data points, showcase remarkably Root Mean Squared Error (RMSE) values between predictions and real data, indicating superior model performance. However, certain clusters hint at potential overfitting, given the disparities between model predictions and actual data. Conversely, clusters with vast datasets underperform compared to the global model, suggesting intricate interactions within the data that might challenge the model’s capabilities. The performance nuances across clusters emphasize the value of specialized, cluster-specific models in capturing the intricacies of each dataset segment. This study underscores the efficacy of KRR in predicting future railway crossing incidents, fostering the implementation of data-driven strategies in public safety.