YS
Ying Sun
Author with expertise in Molecular Mechanisms of Plant Development and Regulation
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
10
(70% Open Access)
Cited by:
2,027
h-index:
30
/
i10-index:
51
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Brassinosteroid signal transduction from cell-surface receptor kinases to nuclear transcription factors

Tae‐Wuk Kim et al.Sep 6, 2009
The brassinosteroid (BR) signalling pathway results in the activation of BZR transcription factors to control plant development. The complete pathway is established here, by showing that BR induces the BSU1 phosphatase-dependent inactivation of the GSK3-like kinase BIN2, thereby leading to accumulation of unphosphorylated BZR factors in the nucleus. Brassinosteroid (BR) regulates gene expression and plant development through a receptor kinase-mediated signal transduction pathway1. Despite the identification of many components of this pathway, it remains unclear how the BR signal is transduced from the cell surface to the nucleus2. Here we describe a complete BR signalling pathway by elucidating key missing steps. We show that phosphorylation of BSK1 (BR-signalling kinase 1) by the BR receptor kinase BRI1 (BR-insensitive 1) promotes BSK1 binding to the BSU1 (BRI1 suppressor 1) phosphatase, and BSU1 inactivates the GSK3-like kinase BIN2 (BR-insensitive 2) by dephosphorylating a conserved phospho-tyrosine residue (pTyr 200). Mutations that affect phosphorylation/dephosphorylation of BIN2 pTyr200 (bin2-1, bin2-Y200F and quadruple loss-of-function of BSU1-related phosphatases) support an essential role for BSU1-mediated BIN2 dephosphorylation in BR-dependent plant growth. These results demonstrate direct sequential BR activation of BRI1, BSK1 and BSU1, and inactivation of BIN2, leading to accumulation of unphosphorylated BZR (brassinazole resistant) transcription factors in the nucleus. This study establishes a fully connected BR signalling pathway and provides new insights into the mechanism of GSK3 regulation.
0

PP2A activates brassinosteroid-responsive gene expression and plant growth by dephosphorylating BZR1

Wenqiang Tang et al.Jan 23, 2011
Brassinosteroids trigger a receptor kinase-mediated signalling pathway to modulate plant development through the dephosphorylation of the BZR transcription factors, which are normally kept inactive by the kinase BIN2. The phosphatase PP2A is now found to be responsible for the dephosphorylation of BZR to trigger the signalling cascade. When brassinosteroid levels are low, the GSK3-like kinase BIN2 phosphorylates and inactivates the BZR1 transcription factor to inhibit growth in plants. Brassinosteroid promotes growth by inducing dephosphorylation of BZR1, but the phosphatase that dephosphorylates BZR1 has remained unknown. Here, using tandem affinity purification, we identified protein phosphatase 2A (PP2A) as a BZR1-interacting protein. Genetic analyses demonstrated a positive role for PP2A in brassinosteroid signalling and BZR1 dephosphorylation. Members of the B’ regulatory subunits of PP2A directly interact with BZR1’s putative PEST domain containing the site of the bzr1-1D mutation. Interaction with and dephosphorylation by PP2A are enhanced by the bzr1-1D mutation, reduced by two intragenic bzr1-1D suppressor mutations, and abolished by deletion of the PEST domain. This study reveals a crucial function for PP2A in dephosphorylating and activating BZR1 and completes the set of core components of the brassinosteroid-signalling cascade from cell surface receptor kinase to gene regulation in the nucleus.
0
Citation436
0
Save
0

Altered Architecture and Enhanced Drought Tolerance in Rice via the Down-Regulation of Indole-3-Acetic Acid by TLD1/OsGH3.13 Activation

Shengwei Zhang et al.Sep 23, 2009
Abstract Plant architecture is determined by genetic and developmental programs as well as by environmental factors. Sessile plants have evolved a subtle adaptive mechanism that allows them to alter their growth and development during periods of stress. Phytohormones play a central role in this process; however, the molecules responsible for integrating growth- and stress-related signals are unknown. Here, we report a gain-of-function rice (Oryza sativa) mutant, tld1-D, characterized by (and named for) an increased number of tillers, enlarged leaf angles, and dwarfism. TLD1 is a rice GH3.13 gene that encodes indole-3-acetic acid (IAA)-amido synthetase, which is suppressed in aboveground tissues under normal conditions but which is dramatically induced by drought stress. The activation of TLD1 reduced the IAA maxima at the lamina joint, shoot base, and nodes, resulting in subsequent alterations in plant architecture and tissue patterning but enhancing drought tolerance. Accordingly, the decreased level of free IAA in tld1-D due to the conjugation of IAA with amino acids greatly facilitated the accumulation of late-embryogenesis abundant mRNA compared with the wild type. The direct regulation of such drought-inducible genes by changes in the concentration of IAA provides a model for changes in plant architecture via the process of drought adaptation, which occurs frequently in nature.
0

The Receptor-Like Kinase SIT1 Mediates Salt Sensitivity by Activating MAPK3/6 and Regulating Ethylene Homeostasis in Rice

Chenhui Li et al.Jun 1, 2014
Abstract High salinity causes growth inhibition and shoot bleaching in plants that do not tolerate high salt (glycophytes), including most crops. The molecules affected directly by salt and linking the extracellular stimulus to intracellular responses remain largely unknown. Here, we demonstrate that rice (Oryza sativa) Salt Intolerance 1 (SIT1), a lectin receptor-like kinase expressed mainly in root epidermal cells, mediates salt sensitivity. NaCl rapidly activates SIT1, and in the presence of salt, as SIT1 kinase activity increased, plant survival decreased. Rice MPK3 and MPK6 function as the downstream effectors of SIT1. SIT1 phosphorylates MPK3 and 6, and their activation by salt requires SIT1. SIT1 mediates ethylene production and salt-induced ethylene signaling. SIT1 promotes accumulation of reactive oxygen species (ROS), leading to growth inhibition and plant death under salt stress, which occurred in an MPK3/6- and ethylene signaling-dependent manner in Arabidopsis thaliana. Our findings demonstrate the existence of a SIT1-MPK3/6 cascade that mediates salt sensitivity by affecting ROS and ethylene homeostasis and signaling. These results provide important information for engineering salt-tolerant crops.
1

Arabidopsis ROOT UV-B SENSITIVE 1 and 2 Interact with Aminotransferases to Regulate Vitamin B6 Homeostasis

Hongyun Tong et al.Mar 1, 2021
Abstract Pyridoxal-5’-phosphate (PLP), the enzymatic cofactor form of Vitamin B6 (vitB6), is a versatile compound that has essential roles in metabolism. Cellular PLP homeostasic regulation is currently not well understood. Here we report that in Arabidopsis, biosynthesized PLP is sequestered by specific aminotransferases (ATs), and that the proteins ROOT UV-B SENSITIVE 1 (RUS1) and RUS2 function with ATs to regulate PLP homeostasis. The stunted growth phenotypes of rus1 and rus2 mutants were previously shown to be rescuable by exogenously supplied vitB6. Specific residue changes near the PLP-binding pocket in ASPARTATE AMINOTRANSFERASE2 (ASP2) also rescued rus1 and rus2 phenotypes. In this study, saturated suppressor screens identified 14 additional suppressor of rus ( sor ) alleles in four aminotransferase genes ( ASP1 , ASP2 , ASP3 , or ALANIN AMINOTRANSFERASE1 ( AAT1 )), which suppressed the rus phenotypes to varying degrees. Each of the sor mutations altered an amino acid in the PLP-binding pocket of the protein, and sor proteins were found to have reduced levels of PLP conjugation. Genetic data revealed that the availability of PLP normally requires both RUS1 and RUS2, and that increasing the number of sor mutants additively enhanced the suppression of rus phenotypes. Biochemical results showed that RUS1 and RUS2 physically interacted with ATs. Our studies suggest a mechanism in which RUS1, RUS2 and specific ATs work together to regulate PLP homeostasis in Arabidopsis.
1
Citation2
0
Save
0

Protein Phosphatase 2A B'α and B'β promote pollen wall construction partially through BZR1-activated CEP1 in Arabidopsis

Yingjie Gao et al.Jan 11, 2025
Abstract A well-constructed pollen wall is essential for pollen fertility, which relies on the contribution of tapetum. Our results demonstrate an essential role of the tapetum-expressed protein phosphatase 2A (PP2A) B’α and B’β in pollen wall formation. The b’aβ double mutant pollen grains harbored sticky remnants and tectum breakages, resulting in failed release. B’α and B’β function partially through dephosphorylating and activating BZR1. The bzr1 bes1 double and higher-order mutants of this family displayed similar defects in pollen wall, while bzr1-1D, having an active mBZR1 exhibited fertile pollen grains in a B’α and B’β dependent manner. Correspondingly, the level of phospho-BZR1 is increased and dephospho-BZR1 is decreased in b’aβ and bzr1-1D/b’aβ at anther stages 8-9 as compared with Col-0 and bzr1-1D, respectively. A cysteine protease gene CEP1 was identified as a BZR1 target, whose transcriptional activation necessitates BRREs in the promoter region and BZR1 DNA binding domain. The mRNA level of CEP1 at stages 8-9 was extremely low in bzr1 and bzr1 bes1, while higher in Col-0 and bzr1-1D depending on B’α and B’β. Furthermore, cep1 mutants displayed similar defects in pollen wall. In brief, this study uncovered a PP2A-BZR1-CEP1 regulatory module, providing a new insight into pollen maturation mechanism.
0

An Experimental and Computational Study on the Effects of Ball Milling on the Physicochemical Properties and Digestibility of a Canna Starch/Tea Polyphenol Complex

Yizhou Wang et al.Jan 10, 2025
To investigate the impact of tea polyphenols on the thermodynamic properties, gelatinization properties, rheological properties, and digestion characteristics of starch after ball milling, canna starch and tea polyphenols were mixed at a 10:1 ratio (w/w) in an experiment and processed with different ball milling times. After ball milling for 3 h, the tea polyphenols and starch fragments formed complexes. Compared with the unmilled mixture, the solubility increased by 199.4%; the shear stress decreased by 89.48%; and the storage modulus and loss modulus decreased. The content of resistant starch first decreased and then increased. Infrared results revealed that ball milling led to a non-covalent interaction between the tea polyphenols and starch. Molecular dynamics simulations were used to study the interaction between the starch and tea polyphenols. The binding free energy of the main component, epigallocatechin gallate (EGCG), in tea polyphenols with starch was reduced from −23.20 kcal/mol to −26.73 kcal/mol. This experiment can provide a reference for the development of functional starch with high resistant starch content.
0

The receptor kinase OsANX limits precocious flowering and inflorescence over-branching and maintains pollen tube integrity in rice

Lan-Xin Zhang et al.Jun 18, 2024
CrRLK1L subfamily members are involved in diverse growth- and development-related processes in Arabidopsis. However, the functions of their counterparts in rice are unknown. Here, OsANX expression was detected in developing inflorescences, mature pollen grains, and growing pollen tubes, and it was localized to the plasma membrane in pollen grains and tobacco epidermal cells. Homozygous osanx progeny could not be segregated from the CRISPR/Cas9-edited mutants osanx-c1+/- and osanx-c2+/-, and such progeny were segregated only occasionally from osanx-c3+/-. Further, all three alleles showed osanx male but not female gamete transmission defects, in line with premature pollen tube rupture in osanx-c3. Additionally, osanx-c3 exhibited precocious flowering, excessively branched inflorescences, and an extremely low seed setting rate of 1.4 %, while osanx-c2+/- and osanx-c3+/- had no obvious defects in inflorescence development or the seed setting rate compared to wild-type Nipponbare (Nip). Consistent with this, the complemented line pPS1:OsANX-GFP/osanx-c2 (PSC), in which the lack of OsANX expression was inflorescence-specific, showed slightly earlier flowering and overly-branched panicles. Multiple inflorescence meristem transition-related and inflorescence architecture-related genes were expressed at higher levels in osanx-c3 than in Nip; thus, they may partially account for the aforementioned mutant phenotypes. Our findings broaden our understanding of the biological functions of OsANX in rice.