ZL
Zhuwei Li
Author with expertise in Photocatalytic Materials for Solar Energy Conversion
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
6
(33% Open Access)
Cited by:
1,959
h-index:
20
/
i10-index:
26
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Engineering single-atomic ruthenium catalytic sites on defective nickel-iron layered double hydroxide for overall water splitting

Panlong Zhai et al.Jul 28, 2021
Abstract Rational design of single atom catalyst is critical for efficient sustainable energy conversion. However, the atomic-level control of active sites is essential for electrocatalytic materials in alkaline electrolyte. Moreover, well-defined surface structures lead to in-depth understanding of catalytic mechanisms. Herein, we report a single-atomic-site ruthenium stabilized on defective nickel-iron layered double hydroxide nanosheets (Ru 1 /D-NiFe LDH). Under precise regulation of local coordination environments of catalytically active sites and the existence of the defects, Ru 1 /D-NiFe LDH delivers an ultralow overpotential of 18 mV at 10 mA cm −2 for hydrogen evolution reaction, surpassing the commercial Pt/C catalyst. Density functional theory calculations reveal that Ru 1 /D-NiFe LDH optimizes the adsorption energies of intermediates for hydrogen evolution reaction and promotes the O–O coupling at a Ru–O active site for oxygen evolution reaction. The Ru 1 /D-NiFe LDH as an ideal model reveals superior water splitting performance with potential for the development of promising water-alkali electrocatalysts.
0

Rational Design of Nanoarray Architectures for Electrocatalytic Water Splitting

Jungang Hou et al.Jan 21, 2019
Abstract Electrochemical water splitting is recognized as a practical strategy for impelling the transformation of sustainable energy sources such as solar energy from electricity to clean hydrogen fuel. To actualize the large‐scale hydrogen production, it is paramount to develop low‐cost, earth‐abundant, efficient, and stable electrocatalysts. Among those electrocatalysts, alternative architectural arrays grown on conductive substrates have been proven to be highly efficient toward water splitting due to large surface area, abundant active sites, and synergistic effects between the electrocatalysts and the substrates. Herein, the advancement of nanoarray architectures in electrocatalytic applications is reviewed. The categories of different nanoarrays and the reliable and versatile synthetic approaches of electrocatalysts are summarized. A unique emphasis is highlighted on the promising strategies to enhance the electrocatalytic activities and stability of architectural arrays by component manipulation, heterostructure regulation, and vacancy engineering. The intrinsic mechanism analysis of electronic structure optimization, intermediates' adsorption facilitation, and coordination environments' amelioration is also discussed with regard to theoretical simulation and in situ identification. Finally, the challenges and opportunities on the valuable directions and promising pathways of architectural arrays toward outstanding electrocatalytic performance are provided in the energy conversion field, facilitating the development of promising water splitting systems.
0

Vertically Aligned Oxygenated-CoS2–MoS2 Heteronanosheet Architecture from Polyoxometalate for Efficient and Stable Overall Water Splitting

Jungang Hou et al.Apr 16, 2018
To achieve efficient conversion of renewable energy sources through water splitting, low-cost, earth-abundant, and robust electrocatalysts for the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) are required. Herein, vertically aligned oxygenated-CoS2–MoS2 (O-CoMoS) heteronanosheets grown on flexible carbon fiber cloth as bifunctional electrocatalysts have been produced by use of the Anderson-type (NH4)4[CoIIMo6O24H6]·6H2O polyoxometalate as bimetal precursor. In comparison to different O-FeMoS, O-NiMoS, and MoS2 nanosheet arrays, the O-CoMoS heteronanosheet array exhibited low overpotentials of 97 and 272 mV to reach a current density of 10 mA cm–2 in alkaline solution for the HER and OER, respectively. Assembled as an electrolyzer for overall water splitting, O-CoMoS heteronanosheets as both the anode and cathode deliver a current density of 10 mA cm–2 at a quite low cell voltage of 1.6 V. This O-CoMoS architecture is highly advantageous for a disordered structure, exposure of active heterointerfaces, a "highway" of charge transport on two-dimensional conductive channels, and abundant active catalytic sites from the synergistic effect of the heterostructures, accomplishing a dramatically enhanced performance for the OER, HER, and overall water splitting. This work represents a feasible strategy to explore efficient and stable bifunctional bimetal sulfide electrocatalysts for renewable energy applications.
0

Engineering Single-Atom Active Sites on Covalent Organic Frameworks for Boosting CO2 Photoreduction

Lei Ran et al.Sep 6, 2022
Solar carbon dioxide (CO2) conversion is an emerging solution to meet the challenges of sustainable energy systems and environmental/climate concerns. However, the construction of isolated active sites not only influences catalytic activity but also limits the understanding of the structure-catalyst relationship of CO2 reduction. Herein, we develop a universal synthetic protocol to fabricate different single-atom metal sites (e.g., Fe, Co, Ni, Zn, Cu, Mn, and Ru) anchored on the triazine-based covalent organic framework (SAS/Tr-COF) backbone with the bridging structure of metal-nitrogen-chlorine for high-performance catalytic CO2 reduction. Remarkably, the as-synthesized Fe SAS/Tr-COF as a representative catalyst achieved an impressive CO generation rate as high as 980.3 μmol g-1 h-1 and a selectivity of 96.4%, over approximately 26 times higher than that of the pristine Tr-COF under visible light irradiation. From X-ray absorption fine structure analysis and density functional theory calculations, the superior photocatalytic performance is attributed to the synergic effect of atomically dispersed metal sites and Tr-COF host, decreasing the reaction energy barriers for the formation of *COOH intermediates and promoting CO2 adsorption and activation as well as CO desorption. This work not only affords rational design of state-of-the-art catalysts at the molecular level but also provides in-depth insights for efficient CO2 conversion.