A sequential model of multiple-shot impacts has been established to investigate the shot peening process. Shot groups are proposed and designed with different patterns to obtain full surface coverage in the impacted region and a satisfactory computational efficiency. The sequential model was applied for the prediction of residual stress on a GH4169 alloy specimen. The results showed that uniform and saturated states of residual stress along the surface and depth profile were obtained in the impacted region when the numerical order of shot patterns reached 4. Furthermore, the numerical results of compressive residual stress in the subsurface were compared with the experimental results obtained using the X-ray diffraction (XRD) analysis and the incremental hole drilling method. The maximum relative error between the numerical results and XRD measurement was 11.6%. Furthermore, the stress profile measured using the incremental hole drilling method was consistent with the numerical results. The established finite element model demonstrated its robustness and effectiveness for the evaluation of residual stress in the shot-peened GH4169 alloy, and it may be applied to other metallic materials with simple modifications.