SC
Shuyang Cao
Author with expertise in Numerical Weather Prediction Models
Achievements
This user has not unlocked any achievements yet.
Key Stats
Upvotes received:
0
Publications:
7
(14% Open Access)
Cited by:
1
h-index:
28
/
i10-index:
60
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Effects of mass and damping ratios on the flow-induced vibration of two staggered circular cylinders

Qi Chen et al.Jul 1, 2024
The mass ratio between structure and fluid and the structural damping ratio have been shown to significantly affect the flow-induced vibration (FIV) of an isolated circular cylinder. Their influences on multiple staggered circular cylinders commonly found in offshore structures have, however, not been clearly understood. This study numerically investigates the vibration responses and flow field of two staggered circular cylinders with the shear stress transfer k–ω turbulence model and the overset mesh method. The accuracy of the numerical method adopted is validated against published experimental results, and the effects of the mass ratio and damping ratio on FIV are systematically investigated. The structural responses of the two cylinders are found more sensitive to the mass ratio than the damping ratio. The amplitude of vibration increases, in general, with a reduction in the mass ratio or damping ratio, and the vibration is much more significant when the mass ratio is less or equal to unity as compared to those from other mass ratio values. A reduction in the mass ratio is found leading to more diverse vortex shedding modes with fast transition from one into another. The self-excited dynamic forces represented by the added mass ratio ma* and added damping ratio ζa are further analyzed. It is found that the added mass ratio is positive under low inflow velocity, and it gradually becomes negative with higher inflow velocity. The added damping ratio is generally negative under low inflow velocity and it increases with the inflow velocity. Furthermore, the added damping ratio decreases with the inflow velocity only when the mass ratio is smaller than unity.
0

Mapping Network-Coordinated Stacked Gated Recurrent Units for Turbulence Prediction

Zhiming Zhang et al.May 27, 2024
Accurately predicting fluid forces acting on the surface of a structure is crucial in engineering design. However, this task becomes particularly challenging in turbulent flow, due to the complex and irregular changes in the flow field. In this study, we propose a novel deep learning method, named mapping network-coordinated stacked gated recurrent units (MSU), for predicting pressure on a circular cylinder from velocity data. Specifically, our coordinated learning strategy is designed to extract the most critical velocity point for prediction, a process that has not been explored before. In our experiments, MSU extracts one point from a velocity field containing 121 points and utilizes this point to accurately predict 100 pressure points on the cylinder. This method significantly reduces the workload of data measurement in practical engineering applications. Our experimental results demonstrate that MSU predictions are highly similar to the real turbulent data in both spatio-temporal and individual aspects. Furthermore, the comparison results show that MSU predicts more precise results, even outperforming models that use all velocity field points. Compared with state-of-the-art methods, MSU has an average improvement of more than 45% in various indicators such as root mean square error (RMSE). Through comprehensive and authoritative physical verification, we established that MSU's prediction results closely align with pressure field data obtained in real turbulence fields. This confirmation underscores the considerable potential of MSU for practical applications in real engineering scenarios. The code is available at https://github.com/zhangzm0128/MSU.