JX
Jingsan Xu
Author with expertise in Photocatalytic Materials for Solar Energy Conversion
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
21
(38% Open Access)
Cited by:
5,693
h-index:
55
/
i10-index:
109
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

A direct Z-scheme g-C3N4/SnS2 photocatalyst with superior visible-light CO2 reduction performance

Tingmin Di et al.Jul 12, 2017
Photocatalytic reduction of CO2 to solar fuels is an ideal approach to simultaneously solve the global warming and energy crisis issues. Constructing a direct Z-scheme heterojunction is an effective way to overcome the drawbacks of single-component or conventional heterogeneous photocatalysts for photocatalytic CO2 reduction. Here, a novel type of direct Z-scheme g-C3N4/SnS2 heterojunction was constructed by depositing SnS2 quantum dots onto the g-C3N4 surface in situ via a simple one-step hydrothermal method. l-Cysteine not only acted as the sulfur source, but also grafted ammine groups onto g-C3N4 in the hydrothermal process, which greatly enhanced the CO2 uptake of the composite. XPS analysis and density functional theory (DFT) calculation show that electron transfer occurred from g-C3N4 to SnS2, resulting in the formation of interfacial internal electric fields (IEF) between the two semiconductors at equilibrium. As a result, Z-scheme charge transfer took place under photoexcitation, with the electrons in SnS2 combining with the holes in g-C3N4, which improved the extraction and utilization of photoinduced electron in g-C3N4. The g-C3N4/SnS2 hybrid shows superior photocatalytic CO2 reduction as compared with individual g-C3N4 and SnS2, which should be attributed to the IEF-induced direct Z-scheme as well as improved CO2 adsorption capacity. In situ FTIR spectra illustrate that HCOOH appeared as an intermediate during the CO2 conversion, which can only be generated by g-C3N4 according to the energy level of the photoinduced electrons, further confirming the Z-scheme configuration for the g-C3N4/SnS2 system.
0

2D/2D g-C3N4/MnO2 Nanocomposite as a Direct Z-Scheme Photocatalyst for Enhanced Photocatalytic Activity

Pengfei Xia et al.Nov 4, 2017
Constructing two-dimensional (2D) composites using layered materials is considered to be an effective approach to achieve high-efficiency photocatalysts. Herein, a 2D/2D g-C3N4/MnO2 heterostructured photocatalyst was synthesized via in situ growth of MnO2 nanosheets on the surface of g-C3N4 nanolayers using a wet-chemical method. The hybrid nanomaterial was characterized by a range of techniques to study its micromorphology, structure, chemical composition/states, and so on. The g-C3N4/MnO2 nanocomposite exhibited greatly improved photocatalytic activities for dye degradation and phenol removal in comparison to the single g-C3N4 or MnO2 component. On the basis of the electron paramagnetic resonance spectra, X-ray photoelectron spectra, and the Mott–Schottky measurements, we consider that a Z-scheme heterojunction was generated between the g-C3N4 nanosheets and MnO2 nanosheets, wherein the photoinduced electrons in MnO2 combined with the holes in g-C3N4, leading to enhanced charge carrier extraction and utilization upon photoexcitation. This work provides an effective approach to construct the 2D/2D heterojunctions for the application in solar-to-fuel conversion and photocatalytic water treatment.
0

Unveiling the origin of boosted photocatalytic hydrogen evolution in simultaneously (S, P, O)-Codoped and exfoliated ultrathin g-C3N4 nanosheets

Qinqin Liu et al.Feb 11, 2019
Recently, metal-free graphitic carbon nitride (g-C3N4) has been recognized as a potential candidate for high-performance photocatalytic hydrogen production while challenges still remain due to poor electronic properties and limited surface active sites. We demonstrate that g-C3N4 can be simultaneously co-doped with S, P and O nonmetal-atoms and exfoliated into ultrathin 2D nanosheets with a thickness of ∼3 nm by a simple, sequential thermal synthesis. The multi-atoms doping and nanostructure modulation remarkably enhanced the photocatalytic hydrogen production under illumination, with the optimal H2 evolution rate reaching 2480 μmol g−1 h−1. First-principle calculations and experimental evidences suggest that, upon elemental doping within the g-C3N4 framework, S atoms occupied the interstitial sites and P and O atoms replaced the C and N atoms, respectively. Consequently, photo-induced charge transfer and separation significantly improved owing to the construction of a more favorable charge transfer pathway. Furthermore, introducing heteroatoms into the structure of g-C3N4 narrowed the bandgap and negatively shifted the conduction band edge, leading to extended visible-light absorption and stronger electron reducibility for subsequent H2 production. Importantly, the in-situ generated 2D g-C3N4 nanosheets exhibited more catalytic surface sites, which was highly beneficial to the photocatalytic water splitting.
0

Cryopolymerization enables anisotropic polyaniline hybrid hydrogels with superelasticity and highly deformation-tolerant electrochemical energy storage

Le Li et al.Jan 7, 2020
Abstract The development of energy storage devices that can endure large and complex deformations is central to emerging wearable electronics. Hydrogels made from conducting polymers give rise to a promising integration of high conductivity and versatility in processing. However, the emergence of conducting polymer hydrogels with a desirable network structure cannot be readily achieved using conventional polymerization methods. Here we present a cryopolymerization strategy for preparing an intrinsically stretchable, compressible and bendable anisotropic polyvinyl alcohol/polyaniline hydrogel with a complete recovery of 100% stretching strain, 50% compressing strain and fully bending. Due to its high mechanical strength, superelastic properties and bi-continuous phase structure, the as-obtained anisotropic polyvinyl alcohol/polyaniline hydrogel can work as a stretching/compressing/bending electrode, maintaining its stable output under complex deformations for an all-solid-state supercapacitor. In particular, it achieves an extremely high energy density of 27.5 W h kg −1 , which is among that of state-of-the-art stretchable supercapacitors.
0

Graphdiyne: A New Photocatalytic CO2 Reduction Cocatalyst

Feiyan Xu et al.Aug 16, 2019
Abstract Exploring new and efficient cocatalysts to boost photocatalytic CO 2 reduction is of critical importance for solar‐to‐fuel conversion. As an emerging carbon allotrope, graphdiyne (GDY) features 2D characteristics and unique carbon–carbon bonds. Herein, a novel GDY cocatalyst coupled TiO 2 nanofibers for boosted photocatalytic CO 2 reduction, synthesized by an electrostatic self‐assembly approach is reported. First‐principle calculation and in situ X‐ray photoelectron spectroscopy measurement reveal that the delocalized electrons in GDY can hybrid with the empty orbitals in TiO 2 within the TiO 2 /GDY network, leading to the formation of an internal electric field at the interfaces, pointing from GDY to TiO 2 . The theoretical simulation further implies strong chemisorption and deformation of CO 2 molecules upon GDY, which can be verified by in situ diffuse reflectance infrared Fourier transform spectroscopy. These effects, in combination with the photothermal effect of GDY, result in enhanced charge separation and directed electron transfer, enhanced CO 2 adsorption and activation as well as accelerated catalytic reactions over the TiO 2 /GDY heterostructure, thereby resulting in significantly improved CO 2 photoreduction efficiency and meanwhile with remarkable selectivity. This work demonstrates that GYD can function as a highly effective cocatalyst for solar energy harvesting and may be used in other catalysis processes.
Load More