HZ
Honggang Zhang
Author with expertise in Next Generation 5G Wireless Networks
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
21
(33% Open Access)
Cited by:
3,656
h-index:
48
/
i10-index:
178
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Optimized Computation Offloading Performance in Virtual Edge Computing Systems Via Deep Reinforcement Learning

Xianfu Chen et al.Oct 16, 2018
To improve the quality of computation experience for mobile devices, mobile-edge computing (MEC) is a promising paradigm by providing computing capabilities in close proximity within a sliced radio access network (RAN), which supports both traditional communication and MEC services. Nevertheless, the design of computation offloading policies for a virtual MEC system remains challenging. Specifically, whether to execute a computation task at the mobile device or to offload it for MEC server execution should adapt to the time-varying network dynamics. This paper considers MEC for a representative mobile user in an ultradense sliced RAN, where multiple base stations (BSs) are available to be selected for computation offloading. The problem of solving an optimal computation offloading policy is modeled as a Markov decision process, where our objective is to maximize the long-term utility performance whereby an offloading decision is made based on the task queue state, the energy queue state as well as the channel qualities between mobile user and BSs. To break the curse of high dimensionality in state space, we first propose a double deep Q-network (DQN)-based strategic computation offloading algorithm to learn the optimal policy without knowing a priori knowledge of network dynamics. Then motivated by the additive structure of the utility function, a Q-function decomposition technique is combined with the double DQN, which leads to a novel learning algorithm for the solving of stochastic computation offloading. Numerical experiments show that our proposed learning algorithms achieve a significant improvement in computation offloading performance compared with the baseline policies.
0

Intelligent 5G: When Cellular Networks Meet Artificial Intelligence

Rongpeng Li et al.Mar 28, 2017
5G cellular networks are assumed to be the key enabler and infrastructure provider in the ICT industry, by offering a variety of services with diverse requirements. The standardization of 5G cellular networks is being expedited, which also implies more of the candidate technologies will be adopted. Therefore, it is worthwhile to provide insight into the candidate techniques as a whole and examine the design philosophy behind them. In this article, we try to highlight one of the most fundamental features among the revolutionary techniques in the 5G era, i.e., there emerges initial intelligence in nearly every important aspect of cellular networks, including radio resource management, mobility management, service provisioning management, and so on. However, faced with ever-increasingly complicated configuration issues and blossoming new service requirements, it is still insufficient for 5G cellular networks if it lacks complete AI functionalities. Hence, we further introduce fundamental concepts in AI and discuss the relationship between AI and the candidate techniques in 5G cellular networks. Specifically, we highlight the opportunities and challenges to exploit AI to achieve intelligent 5G networks, and demonstrate the effectiveness of AI to manage and orchestrate cellular network resources. We envision that AI-empowered 5G cellular networks will make the acclaimed ICT enabler a reality.
0

Deep Learning with Long Short-Term Memory for Time Series Prediction

Yuansheng Hua et al.Mar 8, 2019
Time series prediction can be generalized as a process that extracts useful information from historical records and then determines future values. Learning long-range dependencies that are embedded in time series is often an obstacle for most algorithms, whereas LSTM solutions, as a specific kind of scheme in deep learning, promise to effectively overcome the problem. In this article, we first give a brief introduction to the structure and forward propagation mechanism of LSTM. Then, aiming at reducing the considerable computing cost of LSTM, we put forward a RCLSTM model by introducing stochastic connectivity to conventional LSTM neurons. Therefore, RCLSTM exhibits a certain level of sparsity and leads to a decrease in computational complexity. In the field of telecommunication networks, the prediction of traffic and user mobility could directly benefit from this improvement as we leverage a realistic dataset to show that for RCLSTM, the prediction performance comparable to LSTM is available, whereas considerably less computing time is required. We strongly argue that RCLSTM is more competent than LSTM in latency-stringent or power-constrained application scenarios.
0

Study of a bus-based disruption-tolerant network: mobility modeling and impact on routing

Xiaolan Zhang et al.Sep 9, 2007
We study traces taken from UMass DieselNet, a Disruption-Tolerant Network consisting of WiFi nodes attached to buses. As buses travel their routes, they encounter other buses and in some cases are able to establish pair-wise connections and transfer data between them. We analyze the bus-to-bus contact traces to characterize the contact process between buses and its impact on DTN routing performance. We find that the all-bus-pairs aggregated inter-contact times show no discernible pattern. However, the inter-contact times aggregated at a route level exhibit periodic behavior.Based on analysis of the deterministic inter-meeting times for bus pairs running on route pairs, and consideration of the variability in bus movement and the random failures to establish connections, we construct generative route-level models that capture the above behavior. Through trace-driven simulations of epidemic routing, we find that the epidemic performance predicted by traces generated with this finer-grained route-level model is much closer to the actual performance that would be realized in the operational system than traces generated using the coarse-grained all-bus-pairs aggregated model. This suggests the importance in choosing the rightlevel of model granularity when modelingmobility-related measures such as inter-contact times in DTNs.
0
Citation391
0
Save
0

Network slicing as a service: enabling enterprises' own software-defined cellular networks

Xuan Zhou et al.Jul 1, 2016
With the blossoming of network functions virtualization and software-defined networks, networks are becoming more and more agile with features like resilience, programmability, and open interfaces, which help operators to launch a network or service with more flexibility and shorter time to market. Recently, the concept of network slicing has been proposed to facilitate the building of a dedicated and customized logical network with virtualized resources. In this article, we introduce the concept of hierarchical NSaaS, helping operators to offer customized end-to-end cellular networks as a service. Moreover, the service orchestration and service level agreement mapping for quality assurance are introduced to illustrate the architecture of service management across different levels of service models. Finally, we illustrate the process of network slicing as a service within operators by typical examples. With network slicing as a service, we believe that the supporting system will transform itself to a production system by merging the operation and business domains, and enabling operators to build network slices for vertical industries more agilely.
0

Energy-Efficiency Oriented Traffic Offloading in Wireless Networks: A Brief Survey and a Learning Approach for Heterogeneous Cellular Networks

Xianfu Chen et al.Jan 16, 2015
This paper first provides a brief survey on existing traffic offloading techniques in wireless networks. Particularly as a case study, we put forward an online reinforcement learning framework for the problem of traffic offloading in a stochastic heterogeneous cellular network (HCN), where the time-varying traffic in the network can be offloaded to nearby small cells. Our aim is to minimize the total discounted energy consumption of the HCN while maintaining the quality-of-service (QoS) experienced by mobile users. For each cell (i.e., a macro cell or a small cell), the energy consumption is determined by its system load, which is coupled with system loads in other cells due to the sharing over a common frequency band. We model the energy-aware traffic offloading problem in such HCNs as a discrete-time Markov decision process (DTMDP). Based on the traffic observations and the traffic offloading operations, the network controller gradually optimizes the traffic offloading strategy with no prior knowledge of the DTMDP statistics. Such a model-free learning framework is important, particularly when the state space is huge. In order to solve the curse of dimensionality, we design a centralized Q-learning with compact state representation algorithm, which is named QC-learning. Moreover, a decentralized version of the QC-learning is developed based on the fact the macro base stations (BSs) can independently manage the operations of local small-cell BSs through making use of the global network state information obtained from the network controller. Simulations are conducted to show the effectiveness of the derived centralized and decentralized QC-learning algorithms in balancing the tradeoff between energy saving and QoS satisfaction.
0
Paper
Citation245
0
Save
0

AI-Based Two-Stage Intrusion Detection for Software Defined IoT Networks

Jiaqi Li et al.Nov 26, 2018
Software defined Internet of Things (SD-IoT) networks profit from centralized management and interactive resource sharing, which enhances the efficiency and scalability of Internet of Things applications. But with the rapid growth in services and applications, they are vulnerable to possible attacks and face severe security challenges. Intrusion detection has been widely used to ensure network security, but classical detection methods are usually signature-based or explicit-behavior-based and fail to detect unknown attacks intelligently, which makes it hard to satisfy the requirements of SD-IoT networks. In this paper, we propose an artificial intelligence-based two-stage intrusion detection empowered by software defined technology. It flexibly captures network flows with a global view and detects attacks intelligently. We first leverage Bat algorithm with swarm division and binary differential mutation to select typical features. Then, we exploit Random Forest through adaptively altering the weights of samples using the weighted voting mechanism to classify flows. Evaluation results prove that the modified intelligent algorithms select more important features and achieve superior performance in flow classification. It is also verified that our solution shows better accuracy with lower overhead compared with existing solutions.
Load More