JD
Jinming Duan
Author with expertise in Magnetic Resonance Imaging Applications in Medicine
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
5
(60% Open Access)
Cited by:
405
h-index:
30
/
i10-index:
55
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Automatic 3D Bi-Ventricular Segmentation of Cardiac Images by a Shape-Refined Multi- Task Deep Learning Approach

Jinming Duan et al.Jan 24, 2019
Deep learning approaches have achieved state-of-the-art performance in cardiac magnetic resonance (CMR) image segmentation. However, most approaches have focused on learning image intensity features for segmentation, whereas the incorporation of anatomical shape priors has received less attention. In this paper, we combine a multi-task deep learning approach with atlas propagation to develop a shape-refined bi-ventricular segmentation pipeline for short-axis CMR volumetric images. The pipeline first employs a fully convolutional network (FCN) that learns segmentation and landmark localization tasks simultaneously. The architecture of the proposed FCN uses a 2.5D representation, thus combining the computational advantage of 2D FCNs networks and the capability of addressing 3D spatial consistency without compromising segmentation accuracy. Moreover, a refinement step is designed to explicitly impose shape prior knowledge and improve segmentation quality. This step is effective for overcoming image artifacts (e.g., due to different breath-hold positions and large slice thickness), which preclude the creation of anatomically meaningful 3D cardiac shapes. The pipeline is fully automated, due to network's ability to infer landmarks, which are then used downstream in the pipeline to initialize atlas propagation. We validate the pipeline on 1831 healthy subjects and 649 subjects with pulmonary hypertension. Extensive numerical experiments on the two datasets demonstrate that our proposed method is robust and capable of producing accurate, high-resolution, and anatomically smooth bi-ventricular 3D models, despite the presence of artifacts in input CMR volumes.
0

Recovering high‐quality fiber orientation distributions from a reduced number of diffusion‐weighted images using a model‐driven deep learning architecture

Joseph Bartlett et al.Jun 9, 2024
Abstract Purpose The aim of this study was to develop a model‐based deep learning architecture to accurately reconstruct fiber orientation distributions (FODs) from a reduced number of diffusion‐weighted images (DWIs), facilitating accurate analysis with reduced acquisition times. Methods Our proposed architecture, Spherical Deconvolution Network (SDNet), performed FOD reconstruction by mapping 30 DWIs to fully sampled FODs, which have been fit to 288 DWIs. SDNet included DWI‐consistency blocks within the network architecture, and a fixel‐classification penalty within the loss function. SDNet was trained on a subset of the Human Connectome Project, and its performance compared with FOD‐Net, and multishell multitissue constrained spherical deconvolution. Results SDNet achieved the strongest results with respect to angular correlation coefficient and sum of squared errors. When the impact of the fixel‐classification penalty was increased, we observed an improvement in performance metrics reliant on segmenting the FODs into the correct number of fixels. Conclusion Inclusion of DWI‐consistency blocks improved reconstruction performance, and the fixel‐classification penalty term offered increased control over the angular separation of fixels in the reconstructed FODs.
0

Structure and Intensity Unbiased Translation for 2D Medical Image Segmentation

Tianyang Zhang et al.Jan 1, 2024
Data distribution gaps often pose significant challenges to the use of deep segmentation models. However, retraining models for each distribution is expensive and time-consuming. In clinical contexts, device-embedded algorithms and networks, typically unretrainable and unaccessable post-manufacture, exacerbate this issue. Generative translation methods offer a solution to mitigate the gap by transferring data across domains. However, existing methods mainly focus on intensity distributions while ignoring the gaps due to structure disparities. In this paper, we formulate a new image-to-image translation task to reduce structural gaps. We propose a simple, yet powerful Structure-Unbiased Adversarial (SUA) network which accounts for both intensity and structural differences between the training and test sets for segmentation. It consists of a spatial transformation block followed by an intensity distribution rendering module. The spatial transformation block is proposed to reduce the structural gaps between the two images. The intensity distribution rendering module then renders the deformed structure to an image with the target intensity distribution. Experimental results show that the proposed SUA method has the capability to transfer both intensity distribution and structural content between multiple pairs of datasets and is superior to prior arts in closing the gaps for improving segmentation.