AD
Alwin Daus
Author with expertise in Two-Dimensional Materials
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
5
(20% Open Access)
Cited by:
202
h-index:
16
/
i10-index:
22
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Biodegradable and Highly Deformable Temperature Sensors for the Internet of Things

Giovanni Salvatore et al.Jul 10, 2017
Recent advances in biomaterials, thin film processing, and nanofabrication offer the opportunity to design electronics with novel and unique capabilities, including high mechanical stability and biodegradation, which are relevant in medical implants, environmental sensors, and wearable and disposable devices. Combining reliable electrical performance with high mechanical deformation and chemical degradation remains still challenging. This work reports temperature sensors whose material composition enables full biodegradation while the layout and ultrathin format ensure a response time of 10 ms and stable operation demonstrated by a resistance variation of less than 0.7% when the devices are crumpled, folded, and stretched up to 10%. Magnesium microstructures are encapsulated by a compostable‐certified flexible polymer which exhibits small swelling rate and a Young's modulus of about 500 MPa which approximates that of muscles and cartilage. The extension of the design from a single sensor to an array and its integration onto a fluidic device, made of the same polymer, provides routes for a smart biodegradable system for flow mapping. Proper packaging of the sensors tunes the dissolution dynamics to a few days in water while the connection to a Bluetooth module demonstrates wireless operation with 200 mK resolution prospecting application in food tracking and in medical postsurgery monitoring.
0

Toward Mass Production of Transition Metal Dichalcogenide Solar Cells: Scalable Growth of Photovoltaic-Grade Multilayer WSe2 by Tungsten Selenization

Kathryn Neilson et al.Aug 23, 2024
Semiconducting transition metal dichalcogenides (TMDs) are promising for high-specific-power photovoltaics due to their desirable band gaps, high absorption coefficients, and ideally dangling-bond-free surfaces. Despite their potential, the majority of TMD solar cells to date are fabricated in a nonscalable fashion, with exfoliated materials, due to the lack of high-quality, large-area, multilayer TMDs. Here, we present the scalable, thickness-tunable synthesis of multilayer WSe2 films by selenizing prepatterned tungsten with either solid-source selenium at 900 °C or H2Se precursors at 650 °C. Both methods yield photovoltaic-grade, wafer-scale WSe2 films with a layered van der Waals structure and superior characteristics, including charge carrier lifetimes up to 144 ns, over 14× higher than those of any other large-area TMD films previously demonstrated. Simulations show that such carrier lifetimes correspond to ∼22% power conversion efficiency and ∼64 W g–1 specific power in a packaged solar cell, or ∼3 W g–1 in a fully packaged solar module. The results of this study could facilitate the mass production of high-efficiency multilayer WSe2 solar cells at low cost.
0

Unravelling chemical etchant influences during assisted wet-transfer to obtain high quality MoS2 atomic layers

Animesh Singh et al.May 27, 2024
Two-dimensional (2D) MoS2 is an emerging alternative to traditional semiconductors, overcoming scaling limits in device fabrication. Ongoing efforts to realize the full potential of 2D MoS2 in CMOS back-end-of-line integration encounters notable challenges due to synthesis of such 2D materials requiring high temperature growth substrates and a transfer step. Consequently, lattice preservation of MoS2 atomic layers during transfer from growth substrate to a target substrate is crucial for fabrication and system integration. This work, investigates the impact of commonly used chemical etchant potassium hydroxide (KOH) on MoS2 during the poly(methylmethacrylate) (PMMA) assisted wet-transfer process from sapphire substrates. A systematic experimental framework involving Raman spectroscopy, Atomic Force Microscopy (AFM), Optical Microscopy, and X-ray Photoelectron Spectroscopy (XPS) was employed for comparative evaluation of MoS2 upon transfer. While the investigations highlight the relation of etchant concentration and exposure time to be the deterministic factors, topographic and spectroscopic evidence corroborate the role of K+ ions in etching and oxidation of MoS2 at higher concentrations affecting the MoS2 quality. Thorough characterizations of transfer process, while following the MoS2 quality in this work, provides crucial information on etchant concentration selection to achieve shorter substrate transfer time with minimal impact on material quality.