XX
Xiuming Xu
Author with expertise in Clustered Regularly Interspaced Short Palindromic Repeats and CRISPR-associated proteins
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(50% Open Access)
Cited by:
518
h-index:
11
/
i10-index:
12
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Allele-defined genome of the autopolyploid sugarcane Saccharum spontaneum L.

Jisen Zhang et al.Oct 8, 2018
Modern sugarcanes are polyploid interspecific hybrids, combining high sugar content from Saccharum officinarum with hardiness, disease resistance and ratooning of Saccharum spontaneum. Sequencing of a haploid S. spontaneum, AP85-441, facilitated the assembly of 32 pseudo-chromosomes comprising 8 homologous groups of 4 members each, bearing 35,525 genes with alleles defined. The reduction of basic chromosome number from 10 to 8 in S. spontaneum was caused by fissions of 2 ancestral chromosomes followed by translocations to 4 chromosomes. Surprisingly, 80% of nucleotide binding site-encoding genes associated with disease resistance are located in 4 rearranged chromosomes and 51% of those in rearranged regions. Resequencing of 64 S. spontaneum genomes identified balancing selection in rearranged regions, maintaining their diversity. Introgressed S. spontaneum chromosomes in modern sugarcanes are randomly distributed in AP85-441 genome, indicating random recombination among homologs in different S. spontaneum accessions. The allele-defined Saccharum genome offers new knowledge and resources to accelerate sugarcane improvement. Sequencing of haploid sugarcane, Saccharum spontaneum, allows assembly of a prototypical version of the sugarcane chromosome set. This new reference genome will serve as a resource to accelerate sugarcane improvement.
0
Citation518
0
Save
0

Engineered expression of the invertebrate-specific scorpion toxin AaHIT reduces adult longevity and female fecundity in the diamondback moth Plutella xylostella

Tim Harvey‐Samuel et al.Sep 11, 2020
Abstract BACKGROUND Previous Genetic Pest Management (GPM) systems in diamondback moth (DBM) have relied on expressing lethal proteins (‘effectors’) that are ‘cell-autonomous’ i.e. do not leave the cell they are expressed in. To increase the flexibility of future GPM systems in DBM, we aimed to assess the use of a non cell-autonomous, invertebrate-specific, neurotoxic effector – the scorpion toxin AaHIT. This AaHIT effector was designed to be secreted by expressing cells, potentially leading to effects on distant cells, specifically neuromuscular junctions. RESULTS Expression of AaHIT caused a ‘shaking/quivering’ phenotype which could be repressed by provision of an antidote (tetracycline); a phenotype consistent with the AaHIT mode-of-action. This effect was more pronounced when AaHIT expression was driven by the Hr5/ie1 promoter (82.44% of males, 65.14% of females) rather than Op/ie2 ( 57.35% of males, 48.39% of females). Contrary to expectations, the shaking phenotype and observed fitness costs were limited to adults where they caused severe reductions in mean longevity (–81%) and median female fecundity (–93%). qPCR of AaHIT expression patterns and analysis of piggyBac -mediated transgene insertion sites suggest that restriction of observed effects to the adult stages may be due to influence of local genomic environment on the tetO-AaHIT transgene. CONCLUSION We have demonstrated the feasibility of using non cell-autonomous effectors within a GPM context for the first time in the Lepidoptera, one of the most economically damaging orders of insects. These findings provide a framework for extending this system to other pest Lepidoptera and to other secreted effectors.
0

Molecular mechanism of vivipary as revealed by the genomes of viviparous mangroves and non-viviparous relatives

Hongmei Qiao et al.Jul 1, 2024
Vivipary is a prominent feature of mangroves, allowing seeds to complete germination while attached to the mother plant, and equips propagules to endure and flourish in challenging coastal intertidal wetlands. However, vivipary-associated genetic mechanisms remain largely elusive. Genomes of two viviparous mangrove species and a non-viviparous inland relative were sequenced and assembled at the chromosome level. Comparative genomic analyses between viviparous and non-viviparous genomes revealed that DELAY OF GERMINATION 1 (DOG1) family genes (DFGs), the proteins from which are crucial for seed dormancy, germination, and reserve accumulation, are either lost or dysfunctional in the entire lineage of true viviparous mangroves but are present and functional in their inland, non-viviparous relatives. Transcriptome dynamics at key stages of vivipary further highlighted the roles of phytohormonal homeostasis, proteins stored in mature seeds, and proanthocyanidins in vivipary under conditions lacking DFGs. Population genomic analyses elucidate dynamics of syntenic regions surrounding the missing DFGs. Our findings demonstrated the genetic foundation of constitutive vivipary in Rhizophoraceae mangroves.
0

Rapid Adaption but Genetic Diversity Loss of a Globally Distributed Diatom in the Warmer Ocean

Luman Cheng et al.Dec 1, 2024
ABSTRACT Studies have demonstrated that marine phytoplankton can adapt to the warmer environment. However, the underlying mechanisms remain largely unknown. Here, we quantified the capacity of a globally distributed marine diatom Skeletonema dohrnii , for rapid evolution under the moderate (24°C) and severe (28°C) warming scenarios. Whole‐genome resequencing analysis revealed that the evolutionary adaptation of S. dohrnii to moderate warming was slow (i.e., 700 generations), whereas it was rapid (i.e., 300 generations) under severe warming but suffered a substantial loss of genetic diversity within the population. Genes associated with energy production and lipid metabolism evolved rapidly, particularly under severe warming, suggesting their vital roles in thermal adaptation. Proteomic results also showed the enhanced expression of proteins involved in energy production and lipid metabolism, especially under severe warming. Furthermore, particulate organic carbon and nitrogen production was greatly enhanced in the moderate warming‐selected population but increased insignificantly in the severe warming‐selected population, indicating more rapid adaptation driven by severe warming. Our results provide molecular insights into the rapid but limited evolution of thermal adaptation in marine diatoms and highlight energy production and lipid metabolism as the most important adaptive strategy. Future warming will affect genetic diversity and population dynamics of diatoms in the ocean.