ZN
Zhaolong Ning
Author with expertise in Internet of Things and Edge Computing
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
17
(6% Open Access)
Cited by:
4,087
h-index:
55
/
i10-index:
123
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Energy-Latency Tradeoff for Energy-Aware Offloading in Mobile Edge Computing Networks

Jiao Zhang et al.Dec 22, 2017
Mobile edge computing (MEC) brings computation capacity to the edge of mobile networks in close proximity to smart mobile devices (SMDs) and contributes to energy saving compared with local computing, but resulting in increased network load and transmission latency. To investigate the tradeoff between energy consumption and latency, we present an energy-aware offloading scheme, which jointly optimizes communication and computation resource allocation under the limited energy and sensitive latency. In this paper, single and multicell MEC network scenarios are considered at the same time. The residual energy of smart devices' battery is introduced into the definition of the weighting factor of energy consumption and latency. In terms of the mixed integer nonlinear problem for computation offloading and resource allocation, we propose an iterative search algorithm combining interior penalty function with D.C. (the difference of two convex functions/sets) programming to find the optimal solution. Numerical results show that the proposed algorithm can obtain lower total cost (i.e., the weighted sum of energy consumption and execution latency) comparing with the baseline algorithms, and the energy-aware weighting factor is of great significance to maintain the lifetime of SMDs.
0
Paper
Citation507
0
Save
0

Edge Computing in Industrial Internet of Things: Architecture, Advances and Challenges

Tie Qiu et al.Jan 1, 2020
The Industrial Internet of Things (IIoT) is a crucial research field spawned by the Internet of Things (IoT). IIoT links all types of industrial equipment through the network; establishes data acquisition, exchange, and analysis systems; and optimizes processes and services, so as to reduce cost and enhance productivity. The introduction of edge computing in IIoT can significantly reduce the decision-making latency, save bandwidth resources, and to some extent, protect privacy. This paper outlines the research progress concerning edge computing in IIoT. First, the concepts of IIoT and edge computing are discussed, and subsequently, the research progress of edge computing is discussed and summarized in detail. Next, the future architecture from the perspective of edge computing in IIoT is proposed, and its technical progress in routing, task scheduling, data storage and analytics, security, and standardization is analyzed. Furthermore, we discuss the opportunities and challenges of edge computing in IIoT in terms of 5G-based edge communication, load balancing and data offloading, edge intelligence, as well as data sharing security. Finally, we introduce some typical application scenarios of edge computing in IIoT, such as prognostics and health management (PHM), smart grids, manufacturing coordination, intelligent connected vehicles (ICV), and smart logistics.
0

A Cooperative Partial Computation Offloading Scheme for Mobile Edge Computing Enabled Internet of Things

Zhaolong Ning et al.Sep 4, 2018
With the evolutionary development of latency sensitive applications, delay restriction is becoming an obstacle to run sophisticated applications on mobile devices. Partial computation offloading is promising to enable these applications to execute on mobile user equipments with low latency. However, most of the existing researches focus on either cloud computing or mobile edge computing (MEC) to offload tasks. In this paper, we comprehensively consider both of them and it is an early effort to study the cooperation of cloud computing and MEC in Internet of Things. We start from the single user computation offloading problem, where the MEC resources are not constrained. It can be solved by the branch and bound algorithm. Later on, the multiuser computation offloading problem is formulated as a mixed integer linear programming problem by considering resource competition among mobile users, which is NP-hard. Due to the computation complexity of the formulated problem, we design an iterative heuristic MEC resource allocation algorithm to make the offloading decision dynamically. Simulation results demonstrate that our algorithm outperforms the existing schemes in terms of execution latency and offloading efficiency.
0

Mobile Edge Computing Enabled 5G Health Monitoring for Internet of Medical Things: A Decentralized Game Theoretic Approach

Zhaolong Ning et al.Dec 25, 2020
The prompt evolution of Internet of Medical Things (IoMT) promotes pervasive in-home health monitoring networks. However, excessive requirements of patients result in insufficient spectrum resources and communication overload. Mobile Edge Computing (MEC) enabled 5G health monitoring is conceived as a favorable paradigm to tackle such an obstacle. In this paper, we construct a cost-efficient in-home health monitoring system for IoMT by dividing it into two sub-networks, i.e., intra-Wireless Body Area Networks (WBANs) and beyond-WBANs. Highlighting the characteristics of IoMT, the cost of patients depends on medical criticality, Age of Information (AoI) and energy consumption. For intra-WBANs, a cooperative game is formulated to allocate the wireless channel resources. While for beyond-WBANs, considering the individual rationality and potential selfishness, a decentralized non-cooperative game is proposed to minimize the system-wide cost in IoMT. We prove that the proposed algorithm can reach a Nash equilibrium. In addition, the upper bound of the algorithm time complexity and the number of patients benefiting from MEC is theoretically derived. Performance evaluations demonstrate the effectiveness of our proposed algorithm with respect to the system-wide cost and the number of patients benefiting from MEC.
0
Paper
Citation315
0
Save
0

Intelligent Edge Computing in Internet of Vehicles: A Joint Computation Offloading and Caching Solution

Zhaolong Ning et al.Jun 5, 2020
Recently, Internet of Vehicles (IoV) has become one of the most active research fields in both academic and industry, which exploits resources of vehicles and Road Side Units (RSUs) to execute various vehicular applications. Due to the increasing number of vehicles and the asymmetrical distribution of traffic flows, it is essential for the network operator to design intelligent offloading strategies to improve network performance and provide high-quality services for users. However, the lack of global information and the time-variety of IoVs make it challenging to perform effective offloading and caching decisions under long-term energy constraints of RSUs. Since Artificial Intelligence (AI) and machine learning can greatly enhance the intelligence and the performance of IoVs, we push AI inspired computing, caching and communication resources to the proximity of smart vehicles, which jointly enable RSU peer offloading, vehicle-to-RSU offloading and content caching in the IoV framework. A Mix Integer Non-Linear Programming (MINLP) problem is formulated to minimize total network delay, consisting of communication delay, computation delay, network congestion delay and content downloading delay of all users. Then, we develop an online multi-decision making scheme (named OMEN) by leveraging Lyapunov optimization method to solve the formulated problem, and prove that OMEN achieves near-optimal performance. Leveraging strong cognition of AI, we put forward an imitation learning enabled branch-and-bound solution in edge intelligent IoVs to speed up the problem solving process with few training samples. Experimental results based on real-world traffic data demonstrate that our proposed method outperforms other methods from various aspects.
0

A Cooperative Quality-Aware Service Access System for Social Internet of Vehicles

Zhaolong Ning et al.Oct 18, 2017
Because of the enormous potential to guarantee road safety and improve driving experience, social Internet of Vehicle (SIoV) is becoming a hot research topic in both academic and industrial circles. As the ever-increasing variety, quantity, and intelligence of on-board equipment, along with the evergrowing demand for service quality of automobiles, the way to provide users with a range of security-related and user-oriented vehicular applications has become significant. This paper concentrates on the design of a service access system in SIoVs, which focuses on a reliability assurance strategy and quality optimization method. First, in lieu of the instability of vehicular devices, a dynamic access service evaluation scheme is investigated, which explores the potential relevance of vehicles by constructing their social relationships. Next, this work studies a trajectory-based interaction time prediction algorithm to cope with an unstable network topology and high rate of disconnection in SIoVs. At last, a cooperative quality-aware system model is proposed for service access in SIoVs. Simulation results demonstrate the effectiveness of the proposed scheme.
0
Citation280
0
Save
Load More