ZM
Zhaobin Mu
Author with expertise in Climate Change and Paleoclimatology
Achievements
This user has not unlocked any achievements yet.
Key Stats
Upvotes received:
0
Publications:
2
(0% Open Access)
Cited by:
1
h-index:
8
/
i10-index:
7
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Effects of long-term nighttime warming on extractable soil element composition in a Mediterranean shrubland

Zhaobin Mu et al.Aug 23, 2024
Understanding the soil biogeochemical responses to increasing global warming in the near future is essential for improving our capacity to mitigate the impacts of climate change on highly vulnerable Mediterranean ecosystems. Previous studies have primarily focused on the effects of warming on various biogeochemical processes. However, there is limited knowledge about how the changes in water availability associated to high temperatures can alter the bioavailability and dynamics of soil elements, thereby impacting ecosystem productivity, species composition, and pollution through soil biogeochemical and hydrological processes. In this study, we investigated the effects of long-term nighttime warming on the extractable concentrations of organic carbon (EOC), total nitrogen (ETN), total phosphorus (ETP), and 17 mineral elements (arsenic (As), calcium (Ca), cadmium (Cd), chromium (Cr), copper (Cu), iron (Fe), mercury (Hg), potassium (K), magnesium (Mg), manganese (Mn), molybdenum (Mo), nickel (Ni), lead (Pb), sulfur (S), strontium (Sr), vanadium (V), and zinc (Zn)) through environmental experiments in a semi-arid Mediterranean shrubland. We explored the potential biotic and abiotic mechanisms underlying the seasonal and long-term changes in extractable-mobilizable elemental composition and concentrations. Our findings revealed that prolonged warming led to higher mean annual soil temperature (with an average increase of 0.67 °C from 1999 to 2014), accumulation of soil organic matter (EOC) and extractable concentrations of soil elements (particularly increased ETP and extractable Ca, Mg, Cu, Sr, Mn, and As). These changes were attributed to uniformly higher activities of extracellular soil enzymes and/or lower plant photosynthetic and nutrient uptake capacity linked to more water deficit under warmer conditions. Seasonality unevenly altered element extractable concentrations, with soil microclimate (temperature and water content) and biological (soil microbial and plant) activity being the main drivers of this variability, thus influencing soil element composition. These results suggest significant fluctuations in the extractable concentrations of specific mineral elements in these soils, implying potential future variations in soil element composition as well as the loss of total element concentrations/contents in semi-arid Mediterranean ecosystems due to increasing warming. Therefore, these findings enhance our ability to predict ecosystem management strategies and mitigate the observed negative impacts on plant-soil systems and water quality in the context of climate change.
0
Paper
Citation1
0
Save
0

Depth-dependent responses of soil bacterial communities to salinity in an arid region

Xinping Dong et al.Jul 1, 2024
Soil salinization adversely affects soil fertility and plant growth in arid region worldwide. However, as the drivers of nutrient cycling, the response of microbial communities to soil salinization is poorly understood. This study characterized bacterial communities in different soil layers along a natural salinity gradient in the Karayulgun River Basin, located northwest of the Taklimakan desert in China, using the 16S rRNA Miseq-sequencing technique. The results revealed a significant filtering effect of salinity on the bacterial community in the topsoil. Only the α-diversity (Shannon index) in the topsoil (0-10 cm) significantly decreased with increasing salinity levels, and community dissimilarity in the topsoil was enhanced with increasing salinity, while there was no significant relationship in the subsoil. BugBase predictions revealed that aerobic, facultatively anaerobic, gram-positive, and stress-tolerant bacterial phenotypes in the topsoil was negatively related to salinity. The average degree and number of modules of the bacterial co-occurrence network the topsoil were lower under higher salinity levels, which contrasted with the trends in the subsoil, suggesting an unstable bacterial network in the topsoil caused by higher salinity. The average path length among bacterial species increased in both soil layers under high salinity conditions. Plant diversity and available nitrogen were the main drivers affecting community composition in the topsoil, while available potassium largely shaped community composition in the subsoil. This study provides solid evidence that bacterial communities adapt to salinity through the adjustment of microbial composition based on soil depth. This information will contribute to the sustainable management of drylands and improved predictions and responses to changes in ecosystems caused by climate change.
0
0
Save