JX
Ji Xing
Author with expertise in Process Fault Detection and Diagnosis in Industries
Achievements
This user has not unlocked any achievements yet.
Key Stats
Upvotes received:
0
Publications:
2
(0% Open Access)
Cited by:
0
h-index:
6
/
i10-index:
2
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Hierarchical Physics-Informed Neural Network for Rotor System Health Assessment

Xue Liu et al.Jan 1, 2025
Due to coupled nonlinearities and complex measurement noise, assess the condition of the rotor system remains a challenge, particularly in cases where historical run-to-failure data is lacking. To this end, we proposed a hierarchical physics-informed neural network (HPINN) to identify/discover the ordinary differential equations (ODEs) of a healthy/faulty rotor system from noise measurements and then assess the rotor condition based on the discovered ODEs. Specifically, the ODEs of a healthy rotor system are first stably identified from noisy measurement through HPINN guided by rotor dynamics. Based on the identified healthy ODEs, the extra fault terms in the ODEs of the faulty rotor system are then sparsely regressed from the predefined library embedded in HPINN, in which the phase compensation and alternating training strategy are developed to guarantee training convergence. Moreover, with the mathematical terms of discovered fault, the potential fault and the health indicator (HI) are diagnosed and constructed to assess the condition of the rotor system, respectively. Finally, the effectiveness of the proposed method is verified with simulation and test bench datasets, showing the potential for practical industrial applications. Note to Practitioners —This paper investigates the health assessment problem (condition monitoring and fault diagnosis) of the rotor system, a critical component in large rotating machinery. The proposed HPINN provides a hierarchical framework to firstly identify the ODEs of healthy rotor system and then discover the ODEs of faulty rotor system with limited monitoring data (3-5 seconds data collected from sensor commonly, depending on the rotating speeds). With the mathematical terms of discovered fault, the fault can be diagnosed and a health indicator (HI) can be constructed to assess the condition of rotor system in a fully interpretative way. This approach is applicable to large rotating machinery in safety-critical industries, such as circulating water pumps.