SA
Susan Acton
Author with expertise in Cholesterol Metabolism and Atherosclerosis
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(83% Open Access)
Cited by:
7,032
h-index:
22
/
i10-index:
24
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

A Novel Angiotensin-Converting Enzyme–Related Carboxypeptidase (ACE2) Converts Angiotensin I to Angiotensin 1-9

Mary Donoghue et al.Sep 1, 2000
Abstract —ACE2, the first known human homologue of angiotensin-converting enzyme (ACE), was identified from 5′ sequencing of a human heart failure ventricle cDNA library. ACE2 has an apparent signal peptide, a single metalloprotease active site, and a transmembrane domain. The metalloprotease catalytic domains of ACE2 and ACE are 42% identical, and comparison of the genomic structures indicates that the two genes arose through duplication. In contrast to the more ubiquitous ACE, ACE2 transcripts are found only in heart, kidney, and testis of 23 human tissues examined. Immunohistochemistry shows ACE2 protein predominantly in the endothelium of coronary and intrarenal vessels and in renal tubular epithelium. Active ACE2 enzyme is secreted from transfected cells by cleavage N-terminal to the transmembrane domain. Recombinant ACE2 hydrolyzes the carboxy terminal leucine from angiotensin I to generate angiotensin 1-9, which is converted to smaller angiotensin peptides by ACE in vitro and by cardiomyocytes in culture. ACE2 can also cleave des-Arg bradykinin and neurotensin but not bradykinin or 15 other vasoactive and hormonal peptides tested. ACE2 is not inhibited by lisinopril or captopril. The organ- and cell-specific expression of ACE2 and its unique cleavage of key vasoactive peptides suggest an essential role for ACE2 in the local renin-angiotensin system of the heart and kidney. The full text of this article is available at http://www.circresaha.org.
0
Citation3,055
0
Save
0

Expression cloning of SR-BI, a CD36-related class B scavenger receptor.

Susan Acton et al.Aug 1, 1994
Scavenger receptors are integral membrane proteins that mediate the endocytosis of modified lipoproteins. The first of these to be purified and cloned were the type I and II macrophage scavenger receptors (SR-AI and SR-AII; class A scavenger receptors). Subsequently, the cell surface protein CD36 was shown to bind oxidized low density lipoprotein (oxidized LDL). From a Chinese hamster ovary (CHO) cell variant we have cloned by expression the cDNA for a new member of the CD36 family of membrane proteins, SR-BI, whose predicted protein sequence of 509 amino acids is approximately 30% identical to those of the four previously identified family members. Both SR-BI and CD36 displayed high affinity binding for acetylated LDL with an apparent dissociation constant on the order of approximately 5 micrograms of protein/ml. The ligand binding specificities of CD36 and SR-BI, determined by direct binding or competition assays, were similar, but not identical; both bind modified proteins (acetylated LDL, oxidized LDL, maleylated bovine serum albumin), but not the broad array of other polyanions (e.g. fucoidin, polyguanosinic acid, carrageenan) which are ligands of the class A receptors. Thus, SR-BI and CD36 define a second class of scavenger receptors, designated class B. Native LDL, which does not bind to either class A receptors or CD36, unexpectedly bound with high affinity to SR-BI. Northern blot analysis of murine tissues showed that SR-BI was most abundantly expressed in fat and was present at moderate levels in lung and liver. Furthermore, SR-BI mRNA expression was induced upon differentiation of 3T3-L1 cells into adipocytes. Thus, the tissue distribution of expression and ligand binding properties of SR-BI raise the possibility that this cell surface receptor may play an important role in lipid metabolism.
0

The Class B Scavenger Receptors SR-BI and CD36 Are Receptors for Anionic Phospholipids

Attilio Rigotti et al.Jul 1, 1995
The specific recognition of anionic phospholipids in the outer leaflets of cell membranes and lipoproteins by cell surface receptors may play an important role in a variety of physiologic and pathophysiologic processes (e.g. recognition of damaged or senescent cells by the reticuloendothelial system or lipoprotein homeostasis). Several investigators have described anionic phospholipid binding to cells, and phosphatidylserine (PS) binding to a partially purified ~95-kDa membrane protein has recently been reported (Sambrano, G. R., and Steinberg, D.(1995) Proc. Natl. Acad. Sci. U. S. A. 92, 1396-1400). Using both direct binding and ligand competition assays in transfected cells, we have found that two class B scavenger receptors, SR-BI and CD36, can tightly bind PS and phosphatidylinositol (PI)-containing liposomes (Kd for PS liposome binding to SR-BI is ~15 μg phospholipid/ml or 0.18 nM (mol PS liposomes/l)), but not phosphatidylcholine, phosphatidylethanolamine, or sphingomyelin liposomes. PS and PI liposomes, but not the others, could effectively compete with PS liposomes and modified or native lipoproteins for binding to these receptors. Phosphatidic acid, another anionic phospholipid, could also compete, but was not as effective as PS or PI. Class B scavenger receptors are the first molecularly well-defined, specific cell surface receptors for anionic phospholipids to be described.
0

Altered blood pressure responses and normal cardiac phenotype in ACE2-null mice

Susan Gurley et al.Jul 29, 2006
The carboxypeptidase ACE2 is a homologue of angiotensin-converting enzyme (ACE). To clarify the physiological roles of ACE2, we generated mice with targeted disruption of the Ace2 gene. ACE2-deficient mice were viable, fertile, and lacked any gross structural abnormalities. We found normal cardiac dimensions and function in ACE2-deficient animals with mixed or inbred genetic backgrounds. On the C57BL/6 background, ACE2 deficiency was associated with a modest increase in blood pressure, whereas the absence of ACE2 had no effect on baseline blood pressures in 129/SvEv mice. After acute Ang II infusion, plasma concentrations of Ang II increased almost 3-fold higher in ACE2-deficient mice than in controls. In a model of Ang II–dependent hypertension, blood pressures were substantially higher in the ACE2-deficient mice than in WT. Severe hypertension in ACE2-deficient mice was associated with exaggerated accumulation of Ang II in the kidney, as determined by MALDI-TOF mass spectrometry. Although the absence of functional ACE2 causes enhanced susceptibility to Ang II–induced hypertension, we found no evidence for a role of ACE2 in the regulation of cardiac structure or function. Our data suggest that ACE2 is a functional component of the renin-angiotensin system, metabolizing Ang II and thereby contributing to regulation of blood pressure.
0

LPA3 agonist-producing Bacillus velezensis ADS024 is efficacious in multiple neuroinflammatory disease models

Susan Acton et al.Aug 1, 2024
Neuroinflammation is a common component of neurological disorders. In the gut-brain-immune axis, bacteria and their metabolites are now thought to play a role in the modulation of the nervous and immune systems which may impact neuroinflammation. In this respect, commensal bacteria of humans have recently been shown to produce metabolites that mimic endogenous G-protein coupled receptor (GPCR) ligands. To date, it has not been established whether plant commensal bacteria, which may be ingested by animals including humans, can impact the gut-brain-immune axis via GPCR agonism. We screened an isopropanol (IPA) extract of the plant commensal Bacillus velezensis ADS024, a non-engrafting live biotherapeutic product (LBP) with anti-inflammatory properties isolated from human feces, against a panel of 168 GPCRs and identified strong agonism of the lysophosphatidic acid (LPA) receptor LPA3. The ADS024 IPA extracted material (ADS024-IPA) did not agonize LPA2, and only very weakly agonized LPA1. The agonism of LPA3 was inhibited by the reversible LPA1/3 antagonist Ki16425. ADS024-IPA signaled downstream of LPA3 through G-protein-induced calcium release, recruitment of β-arrestin, and recruitment of the neurodegeneration-associated proteins 14-3-3γ, ε and ζ but did not recruit the β βisoform. Since LPA3 agonism was previously indirectly implicated in the reduction of pathology in models of Parkinson's disease (PD) and multiple sclerosis (MS) by use of the nonselective antagonist Ki16425, and since we identified an LPA3-specific agonist within ADS024, we sought to examine whether LPA3 might indeed be part of a broad underlying mechanism to control neuroinflammation. We tested oral treatment of ADS024 in multiple models of neuroinflammatory diseases using three models of PD, two models of MS, and a model each of amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), and chemo-induced peripheral neuropathy (CIPN). ADS024 treatment improved model-specific functional effects including improvements in motor movement, breathing and swallowing, and allodynia suggesting that ADS024 treatment impacted a universal underlying neuroinflammatory mechanism regardless of the initiating cause of disease. We used the MOG-EAE mouse model to examine early events after disease initiation and found that ADS024 attenuated the increase in circulating lymphocytes and changes in neutrophil subtypes, and ADS024 attenuated the early loss of cell-surface LPA3 receptor expression on circulating white blood cells. ADS024 efficacy was partially inhibited by Ki16425 in vivo suggesting LPA3 may be part of its mechanism. Altogether, these data suggest that ADS024 and its LPA3 agonism activity should be investigated further as a possible treatment for diseases with a neuroinflammatory component.