MZ
Minghang Zhao
Author with expertise in Machine Fault Diagnosis and Prognostics
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
7
(0% Open Access)
Cited by:
1,086
h-index:
22
/
i10-index:
31
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Deep Residual Networks With Dynamically Weighted Wavelet Coefficients for Fault Diagnosis of Planetary Gearboxes

Minghang Zhao et al.Oct 12, 2017
One of the significant tasks in data-driven fault diagnosis methods is to configure a good feature set involving statistical parameters. However, statistical parameters are often incapable of representing the dynamic behavior of planetary gearboxes under variable operating conditions. Although the use of deep learning algorithms to find a good set of features for fault diagnosis has somewhat improved diagnostic performance, the lack of domain knowledge incorporated into deep learning algorithms has limited further improvement. Accordingly, this paper developed a variant of deep residual networks (DRNs), the so-called deep residual networks with dynamically weighted wavelet coefficients (DRN+DWWC) to improve diagnostic performance, which takes a series of sets of wavelet packet coefficients on various frequency bands as an input. Further, the fact that no general consensus has been reached as to which frequency band contains the most intrinsic information about a planetary gearbox's health status calls for “dynamic weighting layers” in the DRN+DWWC and the role of the layers is to dynamically adjust a weight applied to each set of wavelet packet coefficients to find a discriminative set of features that will be further used for planetary gearbox fault diagnosis.
0
Paper
Citation316
0
Save
0

Multiscale Dynamically Parallel Shrinkage Network for Fault Diagnosis of Aviation Hydraulic Pump and Its Generalizable Applications

Song Fu et al.Aug 1, 2024
Aiming to address the multiscale characteristics and noise corruption problems in the vibration signals of aviation hydraulic pumps, this article develops a novel Multiscale Dynamically Parallel Shrinkage Network (MDPSN) to learn complementary and rich fault-related multiscale features, with the ultimate goal of yielding higher diagnostic accuracy. One significant property is the development of a novel dynamically parallel shrinking module (DPSM) that adaptively generates independent soft thresholds for different scales, effectively shrinking noise-related features to zeros. On one hand, DPSM aggregates and interacts with features at all scales to construct a global feature representation containing richer fault-related information, which is served as the foundation for soft thresholding generation, significantly improving the accuracy and rationality of the generated thresholds. On the other hand, DPSM can adaptively generate individual soft threshold for each scale, allowing each scale to use an independent threshold tailored to its own characteristic to eliminate noise-related information. This avoids the issues of over-denoising or under-denoising caused by the uniform application of thresholds across all scales. Finally, the effectiveness of MDPSN is validated by a series of experiment comparisons on an aviation hydraulic pump dataset and two bearing datasets with various types of noise. The experimental results demonstrate that MDPSN achieves superior diagnostic accuracy compared to five other comparison methods.
0

FC-YOLO: an aircraft skin defect detection algorithm based on multi-scale collaborative feature fusion

Wei Zhang et al.Aug 6, 2024
Abstract Aircraft skin defects pose a threat to the safety and airworthiness of the aircraft. The front line of engineering has requirements of high precision and stable defect detection, which cannot be met by existing deep learning methods, due to conflicting information between multi-scale features. Herein, a Fine-Coordinated YOLO (FC-YOLO) algorithm is proposed to detect aircraft skin defects. Firstly, the ELAN-C module with Coordinate & Channel Attention mechanism is applied to the backbone network to enhance multi-scale detection precision. Secondly, the Adaptive-Path Aggregation Network structure is proposed to make features containing more information by adding a shortcut weighted by the Adaptively Spatial Feature Fusion (ASFF) module. The ASFF adaptively allocates the weights of features with different sizes to reduce the inconsistency of features between different levels during feature fusion to improve detection precision. Finally, the SCYLLA-IoU loss function is introduced to calculate the directional loss between the bounding box and the ground truth box to elevate the stability of the training. Experiments are executed with a self-constructed ASD-DET dataset and the public NEU-DET dataset. Results show that the mAP of FC-YOLO is improved by 3.1% and 2.7% compared to that of the original YOLOv7 on the ASD-DET dataset and the NEU-DET dataset. In addition, on the ASD-DET dataset and NEU-DET dataset, the mAP of FC-YOLO was higher than that of YOLOv8, RT-DETR by 1.4%, 1.6% and 2.2%, 3.8%, respectively. By which, it is shown that the proposed FC-YOLO algorithm is promising for the future automatic visual inspection of aircraft skin.
0

DCSIAN: a novel deep cross-scale interactive attention network for fault diagnosis of aviation hydraulic pumps and generalizable applications

Song Fu et al.May 27, 2024
Channel attention (CA) has been wildly applied to enhance the diagnosis performance of multiscale convolution (MSC)-based diagnosis methods. Nevertheless, most of the existing CA modules only consider the internal local correlation among different channels within each scale feature, but ignore the global correlation among different scales, restricting further improvement. To address this issue, a novel deep cross-scale interactive attention network (DCSIAN) is developed to achieve accurate fault diagnosis for aviation hydraulic pumps under high-noise environments. Specifically, a novel cross-scale interactive attention module (CSIAM) is developed and introduced into MSC to learn complementary and rich multiscale features from original vibration signals. CSIAM adopts two cascaded submodules to focus on local channel correlation and global scale correlation simultaneously. Local channel correlation is used to adaptively measure the importance of different channel feature within each scale, while global scale correlation is used to dynamically determine the contribution of each scale feature to the final diagnostic result. In this way, the fault-related information at different scales can be fully captured and utilized. Finally, the effectiveness of DCSIAN is validated by a series of experimental comparisons on an aviation hydraulic pump dataset and a bearing dataset with various types noise.