MJ
Mun Jeong
Author with expertise in Perovskite Solar Cell Technology
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
8
(25% Open Access)
Cited by:
519
h-index:
45
/
i10-index:
157
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Raman study of D* band in graphene oxide and its correlation with reduction

A Lee et al.Sep 28, 2020
Reduced graphene oxide (rGO) is a graphene-like material that exhibits high productivity for a wide range of industrial applications. To promote the application of rGO, it is important to not only produce high-quality rGO but also precisely evaluate the output. The intensity ratio of the D to G band in the Raman scattering is commonly used to assess the defect density of the carbon materials; however, this ratio is limited to evaluate the reduction degree of rGO because of the ambiguity arising from the superposition of the bands. In this study, we investigate the relationship between the intensity ratio of D* to G band and the reduction of graphene oxide (GO) to evaluate the degree of reduction of rGO. The spectral analysis of GO and rGO, along with systematic research of the thermally reduced GO synthesized via thermal treatment (100–900 °C) revealed a strong linkage between the D*/G intensity ratio and the C/O atomic ratio. The atomic vibrational relationships were elucidated by the assignment of the D* band, based on the density functional perturbation theory calculations. These findings explain the atomic vibrational properties of rGO and provide an indicator of the quality of rGO to optimize its performance for applications.
0

Efficient Excitonic Photoluminescence in Direct and Indirect Band Gap Monolayer MoS2

Alexander Steinhoff et al.Aug 31, 2015
We discuss the photoluminescence (PL) of semiconducting transition metal dichalcogenides on the basis of experiments and a microscopic theory. The latter connects ab initio calculations of the single-particle states and Coulomb matrix elements with a many-body description of optical emission spectra. For monolayer MoS2, we study the PL efficiency at the excitonic A and B transitions in terms of carrier populations in the band structure and provide a quantitative comparison to an (In)GaAs quantum well-structure. Suppression and enhancement of PL under biaxial strain is quantified in terms of changes in the local extrema of the conduction and valence bands. The large exciton binding energy in MoS2 enables two distinctly different excitation methods: above-band gap excitation and quasi-resonant excitation of excitonic resonances below the single-particle band gap. The latter case creates a nonequilibrium distribution of carriers predominantly in the K-valleys, which leads to strong emission from the A-exciton transition and a visible B-peak even if the band gap is indirect. For above-band gap excitation, we predict a strongly reduced emission intensity at comparable carrier densities and the absence of B-exciton emission. The results agree well with PL measurements performed on monolayer MoS2 at excitation wavelengths of 405 nm (above) and 532 nm (below the band gap).
0

Role of Chalcogenides in Sensitive Therapeutic Drug Monitoring Using Laser Desorption and Ionization

Sunho Joh et al.Jun 26, 2024
This study investigates the applicability of six transition metal dichalcogenides to efficient therapeutic drug monitoring of ten antiepileptic drugs using laser desorption/ionization-mass spectrometry. We found that molybdenum ditelluride and tungsten ditelluride are suitable for the sensitive quantification of therapeutic drugs. The contribution of tellurium to the enhanced efficiency of laser desorption ionization was validated through theoretical calculations utilizing an integrated model that incorporates transition-metal dichalcogenides and antiepileptic drugs. The results of our theoretical calculations suggest that the relatively low surface electron density for the tellurium-containing transition metal dichalcogenides induces stronger Coulombic interactions, which results in enhanced laser desorption and ionization efficiency. To demonstrate applicability, up to 120 patient samples were analyzed to determine drug concentrations, and the results were compared with those of immunoassay and liquid chromatography–tandem mass spectrometry. Agreements among these methods were statistically evaluated using the Passing–Bablok regression and Bland–Altman analysis. Furthermore, our method has been shown to be applicable to the simultaneous detection and multiplexed quantification of antiepileptic drugs.
0

Harnessing Persistent Photocurrent in a 2D Semiconductor–Polymer Hybrid Structure: Electron Trapping and Fermi Level Modulation for Optoelectronic Memory

Seungho Bang et al.Jul 10, 2024
Recently, 2D semiconductor-based optoelectronic memory has been explored to overcome the limitations of conventional von Neumann architectures by integrating optical sensing and data storage into one device. Persistent photocurrent (PPC), essential for optoelectronic memory, originates from charge carrier trapping according to the Shockley-Read-Hall (SRH) model in 2D semiconductors. The quasi-Fermi level position influences the activation of charge-trapping sites. However, the correlation between quasi-Fermi level modulations and PPC in 2D semiconductors has not been extensively studied. In this study, we demonstrate optoelectronic memory based on a 2D semiconductor-polymer hybrid structure and confirm that the underlying mechanism is charge trapping, as the SRH model explains. Under light illumination, electrons transfer from polyvinylpyrrolidone to p-type tungsten diselenide, resulting in high-level injection and majority carrier-type transitions. The quasi-Fermi level shifts upward with increasing temperature, improving PPC and enabling optoelectronic memory at 433 K. Our findings offer valuable insights into optimizing 2D semiconductor-based optoelectronic memory.