XF
Xiaoming Fan
Author with expertise in Lithium-ion Battery Technology
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
7
(14% Open Access)
Cited by:
1,964
h-index:
31
/
i10-index:
53
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

A Layered‐Nanospace‐Confinement Strategy for the Synthesis of Two‐Dimensional Porous Carbon Nanosheets for High‐Rate Performance Supercapacitors

Xiaoming Fan et al.Dec 10, 2014
A general approach is developed for the synthesis of 2D porous carbon nanosheets (PCNS) from bio‐sources derived carbon precursors (gelatin) by an integrated procedure of intercalation, pyrolysis, and activation. Montmorillonite with layered nanospace is used as a nanotemplate or nanoreactor to confine and modulate the transformation of gelatin, further leading to the formation of 2D nanosheet‐shaped carbon materials. The as‐made 2D PCNS exhibits a significantly improved rate performance, with a high specific capacitance of 246 F g −1 and capacitance retention of 82% at 100 A g −1 , being nearly twice that of microsized activated carbon particulates directly from gelatin (131 F g −1 , 44%). The shortened ion transport distance in the nanoscaled dimension and modulated porous structure is responsible for such an enhanced superior rate capability. More importantly, the present strategy can be extended to other bio‐sources to create 2D PCNS as electrode materials with high‐rate performance. This will also provide a potential strategy for configuring 2D nanostructured carbon electrode materials with a short ion transport distance for supercapacitors and other carbon‐related energy storage and conversion devices.
0

3D Architecture Materials Made of NiCoAl‐LDH Nanoplates Coupled with NiCo‐Carbonate Hydroxide Nanowires Grown on Flexible Graphite Paper for Asymmetric Supercapacitors

Juan Yang et al.Aug 13, 2014
Asymmetric supercapacitors featuring both high energy and power densities as well as a long lifespan are much sought after and may become a reality depending on the availability of cheap yet highly active electrode materials. Here, a novel flexible architecture electrode made of NiCoAl‐layered double hydroxide (NiCoAl‐LDH) nanoplates coupled with NiCo‐carbonate hydroxide (NiCo‐CH) nanowires, grown on graphite paper via an in situ, one‐step, hydrothermal method is reported. The nanowire‐like NiCo‐CH species in the nanoplate matrix function as a scaffold and support the dispersion of the NiCoAl‐LDH nanoplates, resulting in a relatively loose and open structure within the electrode matrix. Asymmetric supercapacitors fabricated using the nanohybrids as the positive electrode and a typical activated carbon (AC) as negative electrode show a high energy density of 58.9 Wh kg −1 at a power density of 0.4 kW kg −1 , which is based on the total mass of active materials at a voltage of 1.6 V. An energy density of 14.9 Wh kg −1 can be retained even at a high power density of 51.5 kW kg −1 . Our asymmetric supercapacitor also exhibits an excellent long cycle life, whereby a specific capacitance of 97% is retained even after 10 000 cycles.
0

Ultrafast Self‐Assembly of Graphene Oxide‐Induced Monolithic NiCo–Carbonate Hydroxide Nanowire Architectures with a Superior Volumetric Capacitance for Supercapacitors

Juan Yang et al.Feb 9, 2015
The monolithic electrodes with high volumetric capacitance demonstrate a great potential in practical industrial applications for supercapacitors. Herein, a novel strategy for ultrafast self‐assembly of graphene oxides (GO)‐induced monolithic NiCo–carbonate hydroxide (NiCo–CH) nanowire composite films (G–CH) is reported. The oxygen‐containing functional groups on the GO surface help effectively to induce formation of the monodisperse NiCo–CH nanowires. Such a nanowire‐shaped structure further functions as a scaffold and/or support, leading to 25 s of ultrafast self‐assembly for G–CH composite films and a relatively loose and open channel that contributes to fast electrolyte transport. The as‐obtained monolithic G–CH architectures show an excellent supercapacitor performance as binder‐ and conductive agent‐free electrode, evidenced by a superior volumetric capacitance of 2936 F cm −3 and good electrochemical stability. Combining highly conductive carbon nanotubes (CNTs) into the monolithic composite films can further create well‐interconnected conductive networks within the electrode matrix, thus to improve the reaction kinetics and rate capability. The present strategy that can modulate the growth of the high‐electroactive pseudocapacitive hydroxides and achieve an ultrafast self‐assembly of monolithic composites may pave a promising new way for development of high‐performance supercapacitors and shed a new light on the configuration of carbon‐based electrode materials in energy storage and conversion devices.
0

3D Porous N‐Doped Graphene Frameworks Made of Interconnected Nanocages for Ultrahigh‐Rate and Long‐Life Li–O2 Batteries

Changtai Zhao et al.Oct 19, 2015
The inferior rate capability and poor cycle stability of the present Li–O 2 batteries are still critical obstacles for practice applications. Configuring novel and integrated air electrode materials with unique structure and tunable chemical compositions is one of the efficient strategies to solve these bottleneck problems. Herein, a novel strategy for synthesis of 3D porous N‐doped graphene aerogels (NPGAs) with frameworks constructed by interconnected nanocages with the aid of polystyrene sphere@polydopamine is reported. The interconnected nanocages as the basic building unit of graphene sheets are assembled inside the skeletons of 3D graphene aerogels, leading to the 3D NPGA with well‐developed interconnected channels and the full exposure of electrochemically active sites. Benefiting from such an unique structure, the as‐made NPGA delivers a high specific capacity, an excellent rate capacity of 5978 mA h g −1 at 3.2 A g −1 , and long cycle stability, especially at a large current density (54 cycles at 1 A g −1 ), indicative of boosted rate capability and cycle life as air electrodes for Li–O 2 batteries. More importantly, based on the total mass of C+Li 2 O 2 , a gravimetric energy density of 2400 W h kg −1 for the NPGA–O 2 //Li cell is delivered at a power density of 1300 W kg −1 .
0

Simple, and highly efficient edge-effect surface acoustic wave atomizer

Qutong Yang et al.May 28, 2024
Conventional surface acoustic wave (SAW) atomizers require a direct water supply on the surface, which can be complex and cumbersome. This paper presents a novel SAW atomizer that uses lateral acoustic wetting to achieve atomization without a direct water supply. The device works by simply pressing a piece of wetted paper strip against the bottom of an excited piezoelectric transducer. The liquid then flows along the side to the unmodified surface edge, where it is atomized into a well-converging mist in a stable and sustainable manner. We identified this phenomenon as the edge effect, using numerical simulation results of surface displacement mode. The feasibility of the prototype design was demonstrated by observing and investigating the integrated process of liquid extraction, transport, and atomization. We further explored the hydrodynamic principles of the change and breakup in liquid film geometry under different input powers. Experiments demonstrate that our atomizer is capable of generating high-quality fine liquid particles stably and rapidly even at very high input power. Compared to conventional SAW atomizer, the dispersion of mist width can be scaled down by 70%, while the atomization rate can be increased by 37.5%. Combined with the advantages of easy installation and robustness, the edge effect-based atomizer offers an attractive alternative to current counterparts for applications requiring high efficiency and miniaturization, such as simultaneous synthesis and encapsulation of nanoparticles, pulmonary drug delivery and portable inhalation therapy.