Tuning the crystal phase of metal alloy nanomaterials has been proved a significant way to alter their catalytic properties based on crystal structure and electronic property. Herein, we successfully developed a simple strategy to controllably synthesize a rare crystal structure of hexagonal close-packed (hcp) NiFe nanoparticle (NP) encapsulated in a N-doped carbon (NC) shell (hcp-NiFe@NC). Then, we systemically investigated the oxygen evolution reaction (OER) performance of the samples under alkaline conditions, in which the hcp-NiFe@NC exhibits superior OER activity compared to the conventional face-centered cubic (fcc) NiFe encapsulated in a N-doped carbon shell (fcc-NiFe@NC). At the current densities of 10 and 100 mA cm-2 , the hcp-NiFe@NC with Fe/Ni ratio of ≈5.4 % only needs ultralow overpotentials of 226 mV and 263 mV versus reversible hydrogen electrode in 1.0 m KOH electrolyte, respectively, which were extremely lower than those of fcc-NiFe@NC and most of other reported NiFe-based electrocatalysts. We proposed that hcp-NiFe possesses favorable electronic property to expedite the reaction on the NC surface, resulting higher catalytic activity for OER. This research provides a new insight to design more efficient electrocatalysts by considering the crystal phase correlated electronic property.