KY
Kai Yu
Author with expertise in Genomic Studies and Association Analyses
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
21
(67% Open Access)
Cited by:
9,169
h-index:
66
/
i10-index:
159
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Multiple loci identified in a genome-wide association study of prostate cancer

Gilles Thomas et al.Feb 10, 2008
We followed our initial genome-wide association study (GWAS) of 527,869 SNPs on 1,172 individuals with prostate cancer and 1,157 controls of European origin—nested in the Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial prospective study—by testing 26,958 SNPs in four independent studies (total of 3,941 cases and 3,964 controls). In the combined joint analysis, we confirmed three previously reported loci (two independent SNPs at 8q24 and one in HNF1B (formerly known as TCF2 on 17q); P < 10−10). In addition, loci on chromosomes 7, 10 (two loci) and 11 were highly significant (between P < 7.31 × 10−13 and P < 2.14 × 10−6). Loci on chromosome 10 include MSMB, which encodes β-microseminoprotein, a primary constituent of semen and a proposed prostate cancer biomarker, and CTBP2, a gene with antiapoptotic activity; the locus on chromosome 7 is at JAZF1, a transcriptional repressor that is fused by chromosome translocation to SUZ12 in endometrial cancer. Of the nine loci that showed highly suggestive associations (P < 2.5 × 10−5), four best fit a recessive model and included candidate susceptibility genes: CPNE3, IL16 and CDH13. Our findings point to multiple loci with moderate effects associated with susceptibility to prostate cancer that, taken together, in the future may predict high risk in select individuals.
0
Citation896
0
Save
0

Genome-wide association study of circulating vitamin D levels

Jiyoung Ahn et al.Apr 23, 2010
The primary circulating form of vitamin D, 25-hydroxy-vitamin D [25(OH)D], is associated with multiple medical outcomes, including rickets, osteoporosis, multiple sclerosis and cancer. In a genome-wide association study (GWAS) of 4501 persons of European ancestry drawn from five cohorts, we identified single-nucleotide polymorphisms (SNPs) in the gene encoding group-specific component (vitamin D binding) protein, GC, on chromosome 4q12-13 that were associated with 25(OH)D concentrations: rs2282679 (P = 2.0 × 10−30), in linkage disequilibrium (LD) with rs7041, a non-synonymous SNP (D432E; P = 4.1 × 10−22) and rs1155563 (P = 3.8 × 10−25). Suggestive signals for association with 25(OH)D were also observed for SNPs in or near three other genes involved in vitamin D synthesis or activation: rs3829251 on chromosome 11q13.4 in NADSYN1 [encoding nicotinamide adenine dinucleotide (NAD) synthetase; P = 8.8 × 10−7], which was in high LD with rs1790349, located in DHCR7, the gene encoding 7-dehydrocholesterol reductase that synthesizes cholesterol from 7-dehydrocholesterol; rs6599638 in the region harboring the open-reading frame 88 (C10orf88) on chromosome 10q26.13 in the vicinity of ACADSB (acyl-Coenzyme A dehydrogenase), involved in cholesterol and vitamin D synthesis (P = 3.3 × 10−7); and rs2060793 on chromosome 11p15.2 in CYP2R1 (cytochrome P450, family 2, subfamily R, polypeptide 1, encoding a key C-25 hydroxylase that converts vitamin D3 to an active vitamin D receptor ligand; P = 1.4 × 10−5). We genotyped SNPs in these four regions in 2221 additional samples and confirmed strong genome-wide significant associations with 25(OH)D through meta-analysis with the GWAS data for GC (P = 1.8 × 10−49), NADSYN1/DHCR7 (P = 3.4 × 10−9) and CYP2R1 (P = 2.9 × 10−17), but not C10orf88 (P = 2.4 × 10−5).
0
Citation754
0
Save
0

Detectable clonal mosaicism and its relationship to aging and cancer

Kevin Jacobs et al.May 6, 2012
Luis Pérez-Jurado, Stephen Chanock and colleagues detect clonal chromosomal abnormalities in peripheral blood or buccal samples from individuals in the general population. They show that the frequency of such events increases with age and is associated with elevated risk of developing subsequent hematological cancers. In an analysis of 31,717 cancer cases and 26,136 cancer-free controls from 13 genome-wide association studies, we observed large chromosomal abnormalities in a subset of clones in DNA obtained from blood or buccal samples. We observed mosaic abnormalities, either aneuploidy or copy-neutral loss of heterozygosity, of >2 Mb in size in autosomes of 517 individuals (0.89%), with abnormal cell proportions of between 7% and 95%. In cancer-free individuals, frequency increased with age, from 0.23% under 50 years to 1.91% between 75 and 79 years (P = 4.8 × 10−8). Mosaic abnormalities were more frequent in individuals with solid tumors (0.97% versus 0.74% in cancer-free individuals; odds ratio (OR) = 1.25; P = 0.016), with stronger association with cases who had DNA collected before diagnosis or treatment (OR = 1.45; P = 0.0005). Detectable mosaicism was also more common in individuals for whom DNA was collected at least 1 year before diagnosis with leukemia compared to cancer-free individuals (OR = 35.4; P = 3.8 × 10−11). These findings underscore the time-dependent nature of somatic events in the etiology of cancer and potentially other late-onset diseases.
0
Citation552
0
Save
0

A multistage genome-wide association study in breast cancer identifies two new risk alleles at 1p11.2 and 14q24.1 (RAD51L1)

Gilles Thomas et al.Mar 29, 2009
David Hunter and colleagues report results of the CGEMS multistage genome-wide association study of breast cancer. They identify two new risk variants on chromosomes 1p11.2 and 14q24.1, and confirm several previously reported breast cancer risk loci. We conducted a three-stage genome-wide association study (GWAS) of breast cancer in 9,770 cases and 10,799 controls in the Cancer Genetic Markers of Susceptibility (CGEMS) initiative. In stage 1, we genotyped 528,173 SNPs in 1,145 cases of invasive breast cancer and 1,142 controls. In stage 2, we analyzed 24,909 top SNPs in 4,547 cases and 4,434 controls. In stage 3, we investigated 21 loci in 4,078 cases and 5,223 controls. Two new loci achieved genome-wide significance. A pericentromeric SNP on chromosome 1p11.2 (rs11249433; P = 6.74 × 10−10 adjusted genotype test, 2 degrees of freedom) resides in a large linkage disequilibrium block neighboring NOTCH2 and FCGR1B; this signal was stronger for estrogen-receptor–positive tumors. A second SNP on chromosome 14q24.1 (rs999737; P = 1.74 × 10−7) localizes to RAD51L1, a gene in the homologous recombination DNA repair pathway. We also confirmed associations with loci on chromosomes 2q35, 5p12, 5q11.2, 8q24, 10q26 and 16q12.1.
0
Citation538
0
Save
0

A shared susceptibility locus in PLCE1 at 10q23 for gastric adenocarcinoma and esophageal squamous cell carcinoma

Christian Abnet et al.Aug 22, 2010
Christian Abnet and colleagues report genome-wide association studies for gastric adenocarcinoma and esophageal squamous cell carcinoma in a Chinese population. They identified a new shared risk locus in the PLCE1 gene at 10q23. We conducted a genome-wide association study of gastric cancer and esophageal squamous cell carcinoma (ESCC) in ethnic Chinese subjects in which we genotyped 551,152 SNPs. We report a combined analysis of 2,240 gastric cancer cases, 2,115 ESCC cases and 3,302 controls drawn from five studies. In logistic regression models adjusted for age, sex and study, multiple variants at 10q23 had genome-wide significance for gastric cancer and ESCC independently. A notable signal was rs2274223, a nonsynonymous SNP located in PLCE1, for gastric cancer (P = 8.40 × 10−9; per-allele odds ratio (OR) = 1.31) and ESCC (P = 3.85 × 10−9; OR = 1.34). The association with gastric cancer differed by anatomic subsite. For tumors in the cardia the association was stronger (P = 4.19 × 10−15; OR = 1.57), and for those in the noncardia stomach it was absent (P = 0.44; OR = 1.05). Our findings at 10q23 could provide insight into the high incidence of both cancers in China.
0
Citation481
0
Save
0

A Genome-wide Association Study of Lung Cancer Identifies a Region of Chromosome 5p15 Associated with Risk for Adenocarcinoma

Maria Landi et al.Oct 16, 2009
Three genetic loci for lung cancer risk have been identified by genome-wide association studies (GWAS), but inherited susceptibility to specific histologic types of lung cancer is not well established. We conducted a GWAS of lung cancer and its major histologic types, genotyping 515,922 single-nucleotide polymorphisms (SNPs) in 5739 lung cancer cases and 5848 controls from one population-based case-control study and three cohort studies. Results were combined with summary data from ten additional studies, for a total of 13,300 cases and 19,666 controls of European descent. Four studies also provided histology data for replication, resulting in 3333 adenocarcinomas (AD), 2589 squamous cell carcinomas (SQ), and 1418 small cell carcinomas (SC). In analyses by histology, rs2736100 (TERT), on chromosome 5p15.33, was associated with risk of adenocarcinoma (odds ratio [OR] = 1.23, 95% confidence interval [CI] = 1.13–1.33, p = 3.02 × 10−7), but not with other histologic types (OR = 1.01, p = 0.84 and OR = 1.00, p = 0.93 for SQ and SC, respectively). This finding was confirmed in each replication study and overall meta-analysis (OR = 1.24, 95% CI = 1.17–1.31, p = 3.74 × 10−14 for AD; OR = 0.99, p = 0.69 and OR = 0.97, p = 0.48 for SQ and SC, respectively). Other previously reported association signals on 15q25 and 6p21 were also refined, but no additional loci reached genome-wide significance. In conclusion, a lung cancer GWAS identified a distinct hereditary contribution to adenocarcinoma. Three genetic loci for lung cancer risk have been identified by genome-wide association studies (GWAS), but inherited susceptibility to specific histologic types of lung cancer is not well established. We conducted a GWAS of lung cancer and its major histologic types, genotyping 515,922 single-nucleotide polymorphisms (SNPs) in 5739 lung cancer cases and 5848 controls from one population-based case-control study and three cohort studies. Results were combined with summary data from ten additional studies, for a total of 13,300 cases and 19,666 controls of European descent. Four studies also provided histology data for replication, resulting in 3333 adenocarcinomas (AD), 2589 squamous cell carcinomas (SQ), and 1418 small cell carcinomas (SC). In analyses by histology, rs2736100 (TERT), on chromosome 5p15.33, was associated with risk of adenocarcinoma (odds ratio [OR] = 1.23, 95% confidence interval [CI] = 1.13–1.33, p = 3.02 × 10−7), but not with other histologic types (OR = 1.01, p = 0.84 and OR = 1.00, p = 0.93 for SQ and SC, respectively). This finding was confirmed in each replication study and overall meta-analysis (OR = 1.24, 95% CI = 1.17–1.31, p = 3.74 × 10−14 for AD; OR = 0.99, p = 0.69 and OR = 0.97, p = 0.48 for SQ and SC, respectively). Other previously reported association signals on 15q25 and 6p21 were also refined, but no additional loci reached genome-wide significance. In conclusion, a lung cancer GWAS identified a distinct hereditary contribution to adenocarcinoma. Recently, three genome-wide association studies (GWAS) of lung cancer and subsequent pooled GWAS analyses identified inherited susceptibility variants on chromosome 15q25,1Hung R.J. McKay J.D. Gaborieau V. Boffetta P. Hashibe M. Zaridze D. Mukeria A. Szeszenia-Dabrowska N. Lissowska J. Rudnai P. et al.A susceptibility locus for lung cancer maps to nicotinic acetylcholine receptor subunit genes on 15q25.Nature. 2008; 452: 633-637Crossref PubMed Scopus (985) Google Scholar, 2Amos C.I. Wu X. Broderick P. Gorlov I.P. Gu J. Eisen T. Dong Q. Zhang Q. Gu X. Vijayakrishnan J. et al.Genome-wide association scan of tag SNPs identifies a susceptibility locus for lung cancer at 15q25.1.Nat. Genet. 2008; 40: 616-622Crossref PubMed Scopus (979) Google Scholar, 3Thorgeirsson T.E. Geller F. Sulem P. Rafnar T. Wiste A. Magnusson K.P. Manolescu A. Thorleifsson G. Stefansson H. Ingason A. et al.A variant associated with nicotine dependence, lung cancer and peripheral arterial disease.Nature. 2008; 452: 638-642Crossref PubMed Scopus (1163) Google Scholar 5p15,4McKay J.D. Hung R.J. Gaborieau V. Boffetta P. Chabrier A. Byrnes G. Zaridze D. Mukeria A. Szeszenia-Dabrowska N. Lissowska J. et al.Lung cancer susceptibility locus at 5p15.33.Nat. Genet. 2008; 40: 1404-1406Crossref PubMed Scopus (450) Google Scholar, 5Wang Y. Broderick P. Webb E. Wu X. Vijayakrishnan J. Matakidou A. Qureshi M. Dong Q. Gu X. Chen W.V. et al.Common 5p15.33 and 6p21.33 variants influence lung cancer risk.Nat. Genet. 2008; 40: 1407-1409Crossref PubMed Scopus (440) Google Scholar, 6Rafnar T. Sulem P. Stacey S.N. Geller F. Gudmundsson J. Sigurdsson A. Jakobsdottir M. Helgadottir H. Thorlacius S. Aben K.K. et al.Sequence variants at the TERT-CLPTM1L locus associate with many cancer types.Nat. Genet. 2009; 41: 221-227Crossref PubMed Scopus (479) Google Scholar and 6p21.5Wang Y. Broderick P. Webb E. Wu X. Vijayakrishnan J. Matakidou A. Qureshi M. Dong Q. Gu X. Chen W.V. et al.Common 5p15.33 and 6p21.33 variants influence lung cancer risk.Nat. Genet. 2008; 40: 1407-1409Crossref PubMed Scopus (440) Google Scholar Lung cancer is classified into two main histologic groups: small cell lung cancer (SC) and non-small cell lung cancer; the latter includes adenocarcinoma (AD) and squamous cell carcinoma (SQ), along with rarer subtypes. Worldwide, adenocarcinoma is the most frequently identified histologic type, and the relative proportion of lung cancer due to this histology has steadily risen. Demographic, etiologic, clinical, and molecular characteristics of the lung cancer subtypes have been reported.7Gabrielson E. Worldwide trends in lung cancer pathology.Respirology. 2006; 11: 533-538Crossref PubMed Scopus (101) Google Scholar Although family history of lung cancer has been associated with histologic subtypes,8Gao Y. Goldstein A.M. Consonni D. Pesatori A.C. Wacholder S. Tucker M.A. Caporaso N.E. Goldin L. Landi M.T. Family history of cancer and nonmalignant lung diseases as risk factors for lung cancer.Int. J. Cancer. 2009; 125: 146-152Crossref PubMed Scopus (39) Google Scholar, 9Li X. Hemminki K. Inherited predisposition to early onset lung cancer according to histological type.Int. J. Cancer. 2004; 112: 451-457Crossref PubMed Scopus (55) Google Scholar, 10Ambrosone C.B. Rao U. Michalek A.M. Cummings K.M. Mettlin C.J. Lung cancer histologic types and family history of cancer. Analysis of histologic subtypes of 872 patients with primary lung cancer.Cancer. 1993; 72: 1192-1198Crossref PubMed Scopus (41) Google Scholar, 11Sellers T.A. Elston R.C. Atwood L.D. Rothschild H. Lung cancer histologic type and family history of cancer.Cancer. 1992; 69: 86-91Crossref PubMed Scopus (37) Google Scholar the inherited susceptibility factors that affect specific histologies are unknown. We conducted a GWAS in 5739 lung cancer cases and 5848 controls (National Cancer Institute [NCI] GWAS) to search for overall susceptibility variants and variants associated with specific histologic types and smoking status. We also conducted a meta-analysis of the NCI GWAS with summary data from ten additional studies, for a total of 13,300 primary lung cancer cases and 19,666 controls, all of European descent. Four of the ten studies provided information on histology for replication analyses; 3333 AD, 2589 SQ, and 1418 SC cases were analyzed overall. The 11,587 subjects in the NCI GWAS were drawn from one population-based case-control study and three cohort studies (Table 1); specifically: the Environment and Genetics in Lung Cancer Etiology (EAGLE),12Landi M.T. Consonni D. Rotunno M. Bergen A.W. Goldstein A.M. Lubin J.H. Goldin L. Alavanja M. Morgan G. Subar A.F. et al.Environment And Genetics in Lung cancer Etiology (EAGLE) study: an integrative population-based case-control study of lung cancer.BMC Public Health. 2008; 8: e203Crossref PubMed Scopus (91) Google Scholar a population-based case-control study including 2100 primary lung cancer cases and 2120 healthy controls enrolled in Italy between 2002 and 2005; the Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study (ATBC),13The ATBC Cancer Prevention Study GroupThe alpha-tocopherol, beta-carotene lung cancer prevention study: design, methods, participant characteristics, and compliance.Ann. Epidemiol. 1994; 4: 1-10Abstract Full Text PDF PubMed Scopus (475) Google Scholar a randomized primary prevention trial including 29,133 male smokers enrolled in Finland between 1985 and 1993; the Prostate, Lung, Colon, Ovary Screening Trial (PLCO),14Hayes R.B. Sigurdson A. Moore L. Peters U. Huang W.Y. Pinsky P. Reding D. Gelmann E.P. Rothman N. Pfeiffer R.M. et al.Methods for etiologic and early marker investigations in the PLCO trial.Mutat. Res. 2005; 592: 147-154Crossref PubMed Scopus (114) Google Scholar a randomized trial including 150,000 individuals enrolled in ten U.S. study centers between 1992 and 2001; and the Cancer Prevention Study II Nutrition Cohort (CPS-II),15Calle E.E. Rodriguez C. Jacobs E.J. Almon M.L. Chao A. McCullough M.L. Feigelson H.S. Thun M.J. The American Cancer Society Cancer Prevention Study II Nutrition Cohort: rationale, study design, and baseline characteristics.Cancer. 2002; 94: 2490-2501Crossref PubMed Scopus (300) Google Scholar including over 183,000 subjects enrolled by the American Cancer Society between 1992 and 2001 across all U.S. states. Analyses stratified by histology in the NCI GWAS included 1730 AD cases, 1400 SQ cases, 678 SC cases, and groups of other histological types or of mixed histologies. These studies were approved by the individual institutional review boards of each location, and each subject gave his or her informed consent for participation.Table 1Studies Included in the Genome-wide Association Analysis of Lung CancerNo. of SubjectsStudyCasesControlsLocationStudy DesignIllumina HumanHap ChipsNCI GWASEAGLEaEnvironment and Genetics in Lung Cancer Etiology study.19201979ItalyPopulation-based case-control550K, 610QUADATBCbAlpha-Tocopherol, Beta-Carotene Cancer Prevention study.17321271FinlandCohort550K, 610QUADPLCOcProstate, Lung, Colon, Ovary screening trial.1390192410 US CentersCohort–Cancer Prevention Trial317K+240S, 550K, 610QUADCPS-IIdCancer Prevention Study II nutrition cohort.697674All US StatesCohort550K, 610QUAD, 1MTOTAL57395848Meta-AnalysisUK19781438UKHospital-based cases, birth cohort controls550KCentral Europe18372432Romania, Hungary, Slovakia, Poland, Russia, Checz Rep.Multicenter hospital-based case-control317K, 370DuoTexas11541137Texas, USAHospital-based case-control317KDeCODE Genetics7196030IcelandPopulation-based case-control317K, 370DuoHGF GermanyeHelmholtz-Gemeinschaft Deutscher Forschungszentren Lung Cancer GWAS.506480GermanyPopulation-based case-control (<50 years)550KCARETfCarotene and Retinol Efficacy Trial cohort.3973936 US CentersCancer Prevention Trial370DuoHUNT2/TromsogNorth Trondelag Health Study 2 / Tromsø IV.394382NorwayPopulation-based case-control370DuoCanada332505Greater Toronto areaHospital-based case-control317KFrance135146Paris and Caen areasHospital-based case-control370DuoEstonia109874EstoniaHospital-based case-control317K, 370DuoTOTAL756113818Grand Total1330019666a Environment and Genetics in Lung Cancer Etiology study.b Alpha-Tocopherol, Beta-Carotene Cancer Prevention study.c Prostate, Lung, Colon, Ovary screening trial.d Cancer Prevention Study II nutrition cohort.e Helmholtz-Gemeinschaft Deutscher Forschungszentren Lung Cancer GWAS.f Carotene and Retinol Efficacy Trial cohort.g North Trondelag Health Study 2 / Tromsø IV. Open table in a new tab The meta-analysis included all of the NCI GWAS data plus summary data from ten additional studies contributing 7561 cases and 13,818 controls (Table 1): (1) the UK study from the Institute for Cancer Research,5Wang Y. Broderick P. Webb E. Wu X. Vijayakrishnan J. Matakidou A. Qureshi M. Dong Q. Gu X. Chen W.V. et al.Common 5p15.33 and 6p21.33 variants influence lung cancer risk.Nat. Genet. 2008; 40: 1407-1409Crossref PubMed Scopus (440) Google Scholar including lung cancer cases from the Genetic Lung Cancer Predisposition Study established in 1999 and controls from the 1958 birth cohort;16Power C. Elliott J. Cohort profile: 1958 British birth cohort (National Child Development Study).Int. J. Epidemiol. 2006; 35: 34-41Crossref PubMed Scopus (628) Google Scholar (2) the International Agency for Research on Cancer (IARC) study in central Europe,1Hung R.J. McKay J.D. Gaborieau V. Boffetta P. Hashibe M. Zaridze D. Mukeria A. Szeszenia-Dabrowska N. Lissowska J. Rudnai P. et al.A susceptibility locus for lung cancer maps to nicotinic acetylcholine receptor subunit genes on 15q25.Nature. 2008; 452: 633-637Crossref PubMed Scopus (985) Google Scholar a hospital-based case-control study conducted in the Czech Republic, Hungary, Poland, Romania, Russia, and Slovakia between 1998 and 2002; (3) the Texas case-control study,2Amos C.I. Wu X. Broderick P. Gorlov I.P. Gu J. Eisen T. Dong Q. Zhang Q. Gu X. Vijayakrishnan J. et al.Genome-wide association scan of tag SNPs identifies a susceptibility locus for lung cancer at 15q25.1.Nat. Genet. 2008; 40: 616-622Crossref PubMed Scopus (979) Google Scholar including cases newly diagnosed at the University of Texas M.D. Anderson Cancer Center since 1991 and controls from the Kelsey-Seybold clinics (the GWAS included only smokers and cases with non-small cell lung cancer); (4) the population-based case-control study from deCODE Genetics in Iceland,3Thorgeirsson T.E. Geller F. Sulem P. Rafnar T. Wiste A. Magnusson K.P. Manolescu A. Thorleifsson G. Stefansson H. Ingason A. et al.A variant associated with nicotine dependence, lung cancer and peripheral arterial disease.Nature. 2008; 452: 638-642Crossref PubMed Scopus (1163) Google Scholar including all Icelandic subjects originally recruited for different genetic studies between 1996 and 2007 at deCODE Genetics and lung cancer cases recruited from the Icelandic Cancer Registry since 1998; (5) the Helmholtz-Gemeinschaft Deutscher Forschungszentren (HGF) lung cancer GWA study,17Sauter W. Rosenberger A. Beckmann L. Kropp S. Mittelstrass K. Timofeeva M. Wolke G. Steinwachs A. Scheiner D. Meese E. et al.Matrix metalloproteinase 1 (MMP1) is associated with early-onset lung cancer.Cancer Epidemiol. Biomarkers Prev. 2008; 17: 1127-1135Crossref PubMed Scopus (102) Google Scholar including lung cancer cases diagnosed at ≤ 50 years from the LUng Cancer in the Young (LUCY) study, a multicenter study within 31 German hospitals, and the Heidelberg lung cancer study, a hospital-based case-control study conducted by the German Cancer Research Center (DKFZ) (controls were selected from the Cooperative Health Research in the Region of Augsburg [KORA]); (6) the Carotene and Retinol Efficacy Trial (CARET) cohort,18Omenn G.S. Goodman G. Thornquist M. Grizzle J. Rosenstock L. Barnhart S. Balmes J. Cherniack M.G. Cullen M.R. Glass A. et al.The beta-carotene and retinol efficacy trial (CARET) for chemoprevention of lung cancer in high risk populations: smokers and asbestos-exposed workers.Cancer Res. 1994; 54: 2038s-2043sPubMed Google Scholar including smokers with a smoking history of at least 20 pack-years enrolled in six U.S. centers between 1983 and 1994; (7) the HUNT2/Tromso study, including lung cancer cases and controls from the North Trondelag Health Study (HUNT 2),19Holmen J.M.K. Kruger O. Langhammer A. Lingaas Holmen T. Bratberg G.H. The Nord-Trøndelag Health Study 1995-97 (HUNT 2): Objectives, contents, methods and participation.Norweg. J. Epidemiol. 2003; 13: 19-32Google Scholar a population-based study conducted between 1995 and 1997 in North Trondelag County, and the Tromsø IV population-based study conducted in Tromsø County between 1994 and 1995; 8) the lung cancer study from Canada,1Hung R.J. McKay J.D. Gaborieau V. Boffetta P. Hashibe M. Zaridze D. Mukeria A. Szeszenia-Dabrowska N. Lissowska J. Rudnai P. et al.A susceptibility locus for lung cancer maps to nicotinic acetylcholine receptor subunit genes on 15q25.Nature. 2008; 452: 633-637Crossref PubMed Scopus (985) Google Scholar including lung cancer cases recruited at the University of Toronto and the Samuel Lunenfeld Research Institute between 1997 and 2002 and GWAS controls randomly selected from family medicine clinics; 9) the lung cancer study from France,20Feyler A. Voho A. Bouchardy C. Kuokkanen K. Dayer P. Hirvonen A. Benhamou S. Point: myeloperoxidase –463G–> a polymorphism and lung cancer risk.Cancer Epidemiol. Biomarkers Prev. 2002; 11: 1550-1554PubMed Google Scholar a hospital-based case-control study including smoking cases and controls recruited between 1988 and 1992 in ten French hospitals; and 10) the lung cancer study from Estonia, a hospital-based case-control study including lung cancer cases enrolled between 2002 and 2006 in Estonian hospitals and controls randomly selected from the Estonian Genome Project population-based cohort.21Nelis M. Esko T. Magi R. Zimprich F. Zimprich A. Toncheva D. Karachanak S. Pischakova T. Balascak I. Peltonen L. et al.Genetic structure of Europeans: a view from the North-East.PLoS ONE. 2009; 4: e5472Crossref PubMed Scopus (227) Google Scholar Three studies (the Texas,2Amos C.I. Wu X. Broderick P. Gorlov I.P. Gu J. Eisen T. Dong Q. Zhang Q. Gu X. Vijayakrishnan J. et al.Genome-wide association scan of tag SNPs identifies a susceptibility locus for lung cancer at 15q25.1.Nat. Genet. 2008; 40: 616-622Crossref PubMed Scopus (979) Google Scholar deCODE,3Thorgeirsson T.E. Geller F. Sulem P. Rafnar T. Wiste A. Magnusson K.P. Manolescu A. Thorleifsson G. Stefansson H. Ingason A. et al.A variant associated with nicotine dependence, lung cancer and peripheral arterial disease.Nature. 2008; 452: 638-642Crossref PubMed Scopus (1163) Google Scholar and HGF German17Sauter W. Rosenberger A. Beckmann L. Kropp S. Mittelstrass K. Timofeeva M. Wolke G. Steinwachs A. Scheiner D. Meese E. et al.Matrix metalloproteinase 1 (MMP1) is associated with early-onset lung cancer.Cancer Epidemiol. Biomarkers Prev. 2008; 17: 1127-1135Crossref PubMed Scopus (102) Google Scholar studies) also contributed summary data from genome-wide scans stratified by histology, including 1138 AD, 578 SQ, and 210 SC cases. The UK study5Wang Y. Broderick P. Webb E. Wu X. Vijayakrishnan J. Matakidou A. Qureshi M. Dong Q. Gu X. Chen W.V. et al.Common 5p15.33 and 6p21.33 variants influence lung cancer risk.Nat. Genet. 2008; 40: 1407-1409Crossref PubMed Scopus (440) Google Scholar contributed data on the top single nucleotide polymorphisms (SNPs) of chromosome 5p15.33 by histology. These four studies contributed 1603 AD, 1189 SQ, and 740 SC cases to the meta-analysis by histology for this locus. In both the NCI GWAS and the studies in the meta-analysis, the lung cancer diagnosis was based on clinical criteria and confirmed by pathology reports from surgery, biopsy, or cytology samples in approximately 95% of cases and on clinical history and imaging for the remaining 5%. Tumor histology was coded according to the International Classification of Diseases for Oncology. In analyses stratified by histology, only adenocarcinoma, squamous cell carcinoma, and small cell carcinoma cases were included. All mixed subtypes or other histologies were excluded. Overall, between 10% and 50% of all diagnoses from the NCI GWAS were centrally reviewed by expert lung pathologists from NCI. The NCI GWAS scan was conducted at two institutions: the Center for Inherited Disease Research (CIDR), which genotyped all EAGLE and 1675 PLCO subjects, and the Core Genotyping Facility (CGF), NCI, which genotyped ATBC, CPS-II, and the remaining PLCO subjects. Controls from the Cancer Genetic Markers of Susceptibility (CGEMS) prostate cancer scan22Yeager M. Orr N. Hayes R.B. Jacobs K.B. Kraft P. Wacholder S. Minichiello M.J. Fearnhead P. Yu K. Chatterjee N. et al.Genome-wide association study of prostate cancer identifies a second risk locus at 8q24.Nat. Genet. 2007; 39: 645-649Crossref PubMed Scopus (908) Google Scholar were also included. EAGLE samples and 1675 PLCO samples were genotyped at CIDR, as part of the Gene Environment Association Studies Initiative (GENEVA) funded through the National Human Genome Research Institute, with the use of Illumina HumanHap550v3_B BeadChips (Illumina, San Diego, CA, USA). Data were released for 5620 of 5727 (98%) samples, including 32 blind duplicates (concordance was 99.993%); these were genotyped with 124 HapMap controls (66 CEU; 58 YRI). Allele cluster definitions per SNP were determined with the use of the Illumina BeadStudio Genotyping Module version 3.1.14 and the combined intensity data from 95% of the samples. The resulting cluster definitions were used on all samples. Genotypes were not called if the quality threshold (Gencall score) was below 0.15. Genotypes were released by CIDR for 560,505 (99.83% of attempted) SNPs. Genotypes were not released for SNPs not called by BeadStudio or for those with call rates less than 85%, more than one HapMap replicate error, more than a 3% (autosomal) or 5% (X chromosome) difference in call rate between genders, or more than 0.5% male AB frequency for the X chromosome. The mean non-Y chromosome SNP call rate and mean sample call rate were each 99.8% for the CIDR data set. Similar procedures were followed at CGF for the ATBC, CPSII, and PLCO cohorts with the use of three Illumina platforms: the HumanHap550K, the HumanHap610, and HumanHap 1 Million chips. All genotyped samples passed quality control metrics at CGF. After removal of assay and locus as a result of low completion rates, genotypes for each sample that appeared in duplicate were merged to form consensus genotypes for each subject. There were 12,111 study subjects available for subsequent analysis. Table S1, available online, shows the distribution of subjects by study and phenotype after application of quality control (QC) metrics. Figure S1 shows the cluster plot for the most notable SNP, rs2736100. A total of 221 pairs of samples were identified with >70% genotype concordance rate. Among them, 189 pairs were expected duplicates and had genotype concordance rates > 99.9%. There were 12 unexpected duplicates (cross or within studies) with >99.97% concordance rates. We evaluated the pairwise concordance on the basis of the entire set and observed 40 pairs of subjects with over 60% of concordant genotypes (genotype concordance > 60%). Exclusions are listed in Table S2. Deviations from Hardy-Weinberg proportions (HWP) were assessed in controls. Expected and observed p values were calculated with the use of the uniform distribution for all loci and the exact test, respectively. Autosomal SNPs with minor allele frequencies (MAFs) >5% and completion rates >95% were included. Deviation from HWP was minimal, and only loci with extremely low p values (p < 10−7) for each QC group were excluded from further analyses (Table S3). A quantile-quantile (Q-Q) plot of the p values per study is shown in Figure S2. To assess population structure, we estimated imputed continental ancestry by using the STRUCTURE program,23Pritchard J.K. Stephens M. Donnelly P. Inference of population structure using multilocus genotype data.Genetics. 2000; 155: 945-959PubMed Google Scholar with a set of 12,898 autosomal SNPs with low local background linkage disequilibrium (LD) (pairwise r2 < 0.004 measured in the population of European ancestry for any pair of SNPs less than 500 kb apart)24Yu K. Wang Z. Li Q. Wacholder S. Hunter D.J. Hoover R.N. Chanock S. Thomas G. Population substructure and control selection in genome-wide association studies.PLoS ONE. 2008; 3: e2551Crossref PubMed Scopus (98) Google Scholar (Figure S3). Genotypes from the three HapMap populations (Build 22 for HapMap II with MAF > 5%)25The International HapMap ProjectNature. 2003; 426: 789-796Crossref PubMed Scopus (4688) Google Scholar were used as reference populations. The number of inferred clusters (“K” parameter) was set to 3 for CEU, YRI, and JPT+CHB samples representing populations of European, African, and Asian origin, respectively. Eighteen subjects were detected as having less than 80% European ancestry and were excluded. Principal component analysis (PCA) for each study group (excluding subjects with less than 80% European ancestry, unexpected duplicates, and potential relative pairs) was performed with the same informative 12,898 SNPs with the use of the EIGENSTRAT program26Price A.L. Patterson N.J. Plenge R.M. Weinblatt M.E. Shadick N.A. Reich D. Principal components analysis corrects for stratification in genome-wide association studies.Nat. Genet. 2006; 38: 904-909Crossref PubMed Scopus (6171) Google Scholar (Figures S4A–S4D). After adjustment for significant principal components (PCs) in each study, comparison of observed and expected distributions showed no evidence for large-scale inflation of the association test statistics (inflation factor λ = 1.03, 103, 1.01, and 1.01 in EAGLE, PLCO, CPS-II, and ATBC, respectively), excluding the possibility of significant hidden population substructure. Q-Q plots for each NCI study are shown in Figures S5A–S5D. After excluding 183 subjects for the reasons described above (summarized in Table S2) and 337 subjects with incomplete phenotype data, we report analyses on 515,922 SNPs in 5739 lung cancer cases and 5848 controls (NCI GWAS, Table 1). Comparable QC procedures were conducted at each institution that provided summary results for the meta-analysis.1Hung R.J. McKay J.D. Gaborieau V. Boffetta P. Hashibe M. Zaridze D. Mukeria A. Szeszenia-Dabrowska N. Lissowska J. Rudnai P. et al.A susceptibility locus for lung cancer maps to nicotinic acetylcholine receptor subunit genes on 15q25.Nature. 2008; 452: 633-637Crossref PubMed Scopus (985) Google Scholar, 2Amos C.I. Wu X. Broderick P. Gorlov I.P. Gu J. Eisen T. Dong Q. Zhang Q. Gu X. Vijayakrishnan J. et al.Genome-wide association scan of tag SNPs identifies a susceptibility locus for lung cancer at 15q25.1.Nat. Genet. 2008; 40: 616-622Crossref PubMed Scopus (979) Google Scholar, 3Thorgeirsson T.E. Geller F. Sulem P. Rafnar T. Wiste A. Magnusson K.P. Manolescu A. Thorleifsson G. Stefansson H. Ingason A. et al.A variant associated with nicotine dependence, lung cancer and peripheral arterial disease.Nature. 2008; 452: 638-642Crossref PubMed Scopus (1163) Google Scholar, 4McKay J.D. Hung R.J. Gaborieau V. Boffetta P. Chabrier A. Byrnes G. Zaridze D. Mukeria A. Szeszenia-Dabrowska N. Lissowska J. et al.Lung cancer susceptibility locus at 5p15.33.Nat. Genet. 2008; 40: 1404-1406Crossref PubMed Scopus (450) Google Scholar, 5Wang Y. Broderick P. Webb E. Wu X. Vijayakrishnan J. Matakidou A. Qureshi M. Dong Q. Gu X. Chen W.V. et al.Common 5p15.33 and 6p21.33 variants influence lung cancer risk.Nat. Genet. 2008; 40: 1407-1409Crossref PubMed Scopus (440) Google Scholar For the genome-wide analysis of the NCI GWAS, we used unconditional logistic regression to derive a per-allele odds ratio (OR) and an associated 1 degree of freedom (df) association test adjusted for age in five-year intervals (defined as age at diagnosis or interview for the case-control study and as baseline age for cohort studies), gender, study (EAGLE, PLCO, ATBC, ACS), and four PCs for population stratification within studies (see description of PC analysis below). In additional analyses, we adjusted for smoking status (current, former, never), cigarettes smoked per day (≤ 10, 11–20, 21–30, 31–40, 41+), duration in 10 yr intervals, and number of years since quitting (1–5, 6–10, 11–20, 21–30, 30+) for former smokers (subjects who quit smoking at least 6 mo before participating in the study). The analyses with single and multiple SNPs stratified by histology, smoking status, and decade of birth were conducted with the use of the same models. Tests for interaction between a SNP (coded as a continuous variable) and smoking status or birth decade (coded with the use of dummy variables) were performed with Wald tests with the use of multiple dfs. For the meta-analysis with other studies, we obtained per-allele ORs and standard errors from each study. Because only summary data were available, we conducted the meta-analysis in two separate groups: “Set 1 SNPs” included a core of 279,698 SNPs that were available across all studies; and “Set 2 SNPs” included 197,647 SNPs that were available only for a subset of the studies that used the HumanHap500 or denser genomic platforms or provided summary data on imputed SNPs. We obtained meta-analysis estimates of per-allele ORs and associated p values by using the weighted Z-score method under a fixed effect model.27Higgins J.P. Thompson S.G. Quantifying heterogeneity in a meta-analysis.Stat. Med. 2002; 21: 1539-1558Crossref PubMed Scopus (18007) Google Scholar Tests for heterogeneity by study were performed with the use of the QE statistics, assuming a random effect model. For testing of heterogeneity across histologic subtypes, we reported the smallest p values obtained from pairwise case-case analyses between the subtypes after adjustment for multiple testing with the use of the Bonferroni correction. All odds-ratios were reported with respect to the minor allele in the pooled set of controls from all studies that contributed to the meta-analysis. For adjustment of population stratification, we used the same set of 12,898 autosomal informative SNPs24Yu K. Wang Z. Li Q. Wacholder S. Hunter D.J. Hoover R.N. Chanock S. Thomas G. Population substructure and control selection in genome-wide association studies.PLoS ONE. 2008; 3: e2551Crossref PubMed Scopus (98) Google Scholar used for QC. We conducted PCA in each of the four study groups (EAGLE, PLCO, ATBC, and CPS-II) separately.27Higgins J.P. Thompson S.G. Quantifying heterogeneity in a meta-analysis.Stat. Med. 2002; 21: 1539-1558Crossref PubMed Scopus (18007) Google Scholar For each study group, we identi
0
Citation476
0
Save
Load More