TX
Tiantian Xue
Author with expertise in Mechanisms and Treatment of Liver Fibrosis
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
5
(40% Open Access)
Cited by:
265
h-index:
19
/
i10-index:
28
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Smart Microneedle Arrays Integrating Cell‐Free Therapy and Nanocatalysis to Treat Liver Fibrosis

Yanteng Xu et al.Jun 14, 2024
Abstract Liver fibrosis is a chronic pathological condition lacking specific clinical treatments. Stem cells, with notable potential in regenerative medicine, offer promise in treating liver fibrosis. However, stem cell therapy is hindered by potential immunological rejection, carcinogenesis risk, efficacy variation, and high cost. Stem cell secretome‐based cell‐free therapy offers potential solutions to address these challenges, but it is limited by low delivery efficiency and rapid clearance. Herein, an innovative approach for in situ implantation of smart microneedle (MN) arrays enabling precisely controlled delivery of multiple therapeutic agents directly into fibrotic liver tissues is developed. By integrating cell‐free and platinum‐based nanocatalytic combination therapy, the MN arrays can deactivate hepatic stellate cells. Moreover, they promote excessive extracellular matrix degradation by more than 75%, approaching normal levels. Additionally, the smart MN arrays can provide hepatocyte protection while reducing inflammation levels by ≈70–90%. They can also exhibit remarkable capability in scavenging almost 100% of reactive oxygen species and alleviating hypoxia. Ultimately, this treatment strategy can effectively restrain fibrosis progression. The comprehensive in vitro and in vivo experiments, supplemented by proteome and transcriptome analyses, substantiate the effectiveness of the approach in treating liver fibrosis, holding immense promise for clinical applications.
0
Citation2
0
Save
0

Framework nucleic Acid-MicroRNA mediated hepatic differentiation and functional hepatic spheroid development for treating acute liver failure

Hongyan Wei et al.Aug 27, 2024
The specific induction of hepatic differentiation presents a significant challenge in developing alternative liver cell sources and viable strategies for clinical therapy of acute liver failure (ALF). The past decade has witnessed the blossom of microRNAs in regenerative medicine. Herein, microRNA 122-functionalized tetrahedral framework nucleic acid (FNA-miR-122) has emerged as an unprecedented and potential platform for directing the hepatic differentiation of adipose-derived mesenchymal stem cells (ADMSCs), which offers a straightforward and cost-effective method for generating functional hepatocyte-like cells (FNA-miR-122-iHep). Additionally, we have successfully established a liver organoid synthesis strategy by optimizing the co-culture of FNA-miR-122-iHep with endothelial cells (HUVECs), resulting in functional Hep:HUE-liver spheroids. Transcriptome analysis not only uncovered the potential molecular mechanisms through which miR-122 influences hepatic differentiation in ADMSCs, but also clarified that Hep:HUE-liver spheroids could further facilitate hepatocyte maturation and improved tissue-specific functions, which may provide new hints to be used to develop a hepatic organoid platform. Notably, compared to transplanted ADMSCs and Hep-liver spheroid, respectively, both FNA-miR-122-iHep-based single cell therapy and Hep:HUE-liver spheroid-based therapy showed high efficacy in treating ALF in vivo. Collectively, this research establishes a robust system using microRNA to induce ADMSCs into functional hepatocyte-like cells and to generate hepatic organoids in vitro, promising a highly efficient therapeutic approach for ALF.
0

Freezing‐Assisted Direct Ink Writing of Customized Polyimide Aerogels with Controllable Micro‐ and Macro‐ Structures for Thermal Insulation

Tiantian Xue et al.Nov 12, 2024
Abstract Polyimide (PI) aerogels have attracted attention in thermal management due to their low thermal conductivity, high porosity, and robust mechanical properties. However, building PI aerogels with elaborately tailored micro‐ and macro‐ structures for optimized thermal insulation performance in specific scenarios remains a challenge. Here, a scalable approach is reported to prepare PI aerogels with controllable micro‐ and macro‐ structures by freezing‐assisted direct ink writing (FADIW) of poly(amic acid) (PAA) inks. This FADIW strategy can enable continuous ink deposition and transient low‐temperature‐induced gelation, contributing to the facile construction of spatially free geometries with structural complexity and shape fidelity. Importantly, controllable construction of microstructures of the aerogels is achieved by controlling the extrusion substrate temperature. The resulting customized PI aerogels show good thermal insulation owing to the porous microstructure and customized macrostructure, enabling good thermal management for portable electronics. In addition, this FADIW strategy is universal and allows for multi‐material integration, broadening the functionality of PI aerogels. Significantly, such FADIW approach can be promisingly applied to realize on‐demand design of PI aerogels and other polymer aerogels with targeted micro‐ and macro‐structures, offering an alternative avenue for the manufacture of customized aerogels toward widespread applications.