JO
J. Orrell
Author with expertise in Particle Physics and High-Energy Collider Experiments
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
12
(92% Open Access)
Cited by:
3,803
h-index:
44
/
i10-index:
97
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Electron energy spectra, fluxes, and day-night asymmetries of 8 B solar neutrinos from measurements with NaCl dissolved in the heavy-water detector at the Sudbury Neutrino Observatory

B. Aharmim et al.Nov 30, 2005
Results are reported from the complete salt phase of the Sudbury Neutrino Observatory experiment in which NaCl was dissolved in the D$_2$O target. The addition of salt enhanced the signal from neutron capture, as compared to the pure D$_2$O detector. By making a statistical separation of charged-current events from other types based on event-isotropy criteria, the effective electron recoil energy spectrum has been extracted. In units of $ 10^6$ cm$^{-2}$ s$^{-1}$, the total flux of active-flavor neutrinos from $^8$B decay in the Sun is found to be $4.94^{+0.21}_{-0.21}{(stat)}^{+0.38}_{-0.34}{(syst)}$ and the integral flux of electron neutrinos for an undistorted $^8$B spectrum is $1.68^{+0.06}_{-0.06}{(stat)}^{+0.08}_{-0.09}{(syst)}$; the signal from ($\nu_x$,e) elastic scattering is equivalent to an electron-neutrino flux of $2.35^{+0.22}_{-0.22}{(stat)}^{+0.15}_{-0.15}{(syst)}$. These results are consistent with those expected for neutrino oscillations with the so-called Large Mixing Angle parameters, and also with an undistorted spectrum. A search for matter-enhancement effects in the Earth through a possible day-night asymmetry in the charged-current integral rate is consistent with no asymmetry. Including results from other experiments, the best-fit values for two-neutrino mixing parameters are $\Delta m^2 = (8.0^{+0.6}_{-0.4}) \times 10^{-5}$ eV$^2$ and $\theta = 33.9 ^{+2.4}_{-2.2}$ degrees.
0

CoGeNT: A search for low-mass dark matter using p -type point contact germanium detectors

C.E. Aalseth et al.Jul 8, 2013
CoGeNT employs p-type point-contact (PPC) germanium detectors to search for Weakly Interacting Massive Particles (WIMPs). By virtue of its low energy threshold and ability to reject surface backgrounds, this type of device allows an emphasis on low-mass dark matter candidates (wimp mass of about 10 GeV/c2). We report on the characteristics of the PPC detector presently taking data at the Soudan Underground Laboratory, elaborating on aspects of shielding, data acquisition, instrumental stability, data analysis, and background estimation. A detailed background model is used to investigate the low energy excess of events previously reported, and to assess the possibility of temporal modulations in the low-energy event rate. Extensive simulations of all presently known backgrounds do not provide a viable background explanation for the excess of low-energy events in the CoGeNT data, or the previously observed temporal variation in the event rate. Also reported on for the first time is a determination of the surface (slow pulse rise time) event contamination in the data as a function of energy. We conclude that the CoGeNT detector technology is well suited to search for the annual modulation signature expected from dark matter particle interactions in the region of WIMP mass and coupling favored by the DAMA/LIBRA results
0
Paper
Citation376
0
Save
0

Projected sensitivity of the SuperCDMS SNOLAB experiment

R. Agnese et al.Apr 7, 2017
SuperCDMS SNOLAB will be a next-generation experiment aimed at directly detecting low-mass (< 10 GeV/c$^2$) particles that may constitute dark matter by using cryogenic detectors of two types (HV and iZIP) and two target materials (germanium and silicon). The experiment is being designed with an initial sensitivity to nuclear recoil cross sections ~ 1 x 10$^{-43}$ cm$^2$ for a dark matter particle mass of 1 GeV/c$^2$, and with capacity to continue exploration to both smaller masses and better sensitivities. The phonon sensitivity of the HV detectors will be sufficient to detect nuclear recoils from sub-GeV dark matter. A detailed calibration of the detector response to low energy recoils will be needed to optimize running conditions of the HV detectors and to interpret their data for dark matter searches. Low-activity shielding, and the depth of SNOLAB, will reduce most backgrounds, but cosmogenically produced $^{3}$H and naturally occurring $^{32}$Si will be present in the detectors at some level. Even if these backgrounds are x10 higher than expected, the science reach of the HV detectors would be over three orders of magnitude beyond current results for a dark matter mass of 1 GeV/c$^2$. The iZIP detectors are relatively insensitive to variations in detector response and backgrounds, and will provide better sensitivity for dark matter particle masses (> 5 GeV/c$^2$). The mix of detector types (HV and iZIP), and targets (germanium and silicon), planned for the experiment, as well as flexibility in how the detectors are operated, will allow us to maximize the low-mass reach, and understand the backgrounds that the experiment will encounter. Upgrades to the experiment, perhaps with a variety of ultra-low-background cryogenic detectors, will extend dark matter sensitivity down to the "neutrino floor", where coherent scatters of solar neutrinos become a limiting background.
0

Low-mass dark matter search with CDMSlite

R. Agnese et al.Jan 17, 2018
The SuperCDMS experiment is designed to directly detect weakly interacting massive particles (WIMPs) that may constitute the dark matter in our Galaxy. During its operation at the Soudan Underground Laboratory, germanium detectors were run in the CDMSlite mode to gather data sets with sensitivity specifically for WIMPs with masses ${<}$10 GeV/$c^2$. In this mode, a higher detector-bias voltage is applied to amplify the phonon signals produced by drifting charges. This paper presents studies of the experimental noise and its effect on the achievable energy threshold, which is demonstrated to be as low as 56 eV$_{\text{ee}}$ (electron equivalent energy). The detector-biasing configuration is described in detail, with analysis corrections for voltage variations to the level of a few percent. Detailed studies of the electric-field geometry, and the resulting successful development of a fiducial parameter, eliminate poorly measured events, yielding an energy resolution ranging from ${\sim}$9 eV$_{\text{ee}}$ at 0 keV to 101 eV$_{\text{ee}}$ at ${\sim}$10 eV$_{\text{ee}}$. New results are derived for astrophysical uncertainties relevant to the WIMP-search limits, specifically examining how they are affected by variations in the most probable WIMP velocity and the Galactic escape velocity. These variations become more important for WIMP masses below 10 GeV/$c^2$. Finally, new limits on spin-dependent low-mass WIMP-nucleon interactions are derived, with new parameter space excluded for WIMP masses $\lesssim$3 GeV/$c^2$
Load More