YC
Yan‐Feng Chen
Author with expertise in Topological Insulators and Superconductors
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
16
(81% Open Access)
Cited by:
3,649
h-index:
52
/
i10-index:
191
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Acoustic topological insulator and robust one-way sound transport

Cheng He et al.Aug 29, 2016
The acoustic analogue of a topological insulator is shown: a metamaterial exhibiting one-way sound transport along its edge. The system — a graphene-like array of stainless-steel rods — is a promising new platform for exploring topological phenomena. Topological design of materials enables topological symmetries and facilitates unique backscattering-immune wave transport1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26. In airborne acoustics, however, the intrinsic longitudinal nature of sound polarization makes the use of the conventional spin–orbital interaction mechanism impossible for achieving band inversion. The topological gauge flux is then typically introduced with a moving background in theoretical models19,20,21,22. Its practical implementation is a serious challenge, though, due to inherent dynamic instabilities and noise. Here we realize the inversion of acoustic energy bands at a double Dirac cone15,27,28 and provide an experimental demonstration of an acoustic topological insulator. By manipulating the hopping interaction of neighbouring ’atoms’ in this new topological material, we successfully demonstrate the acoustic quantum spin Hall effect, characterized by robust pseudospin-dependent one-way edge sound transport. Our results are promising for the exploration of new routes for experimentally studying topological phenomena and related applications, for example, sound-noise reduction.
0

Second-order topology and multidimensional topological transitions in sonic crystals

Xiujuan Zhang et al.Mar 18, 2019
Topological insulators with unique edge states have revolutionized the understanding of solid-state materials. Recently, higher-order topological insulators (HOTIs), which host both gapped edge states and in-gap corner/hinge states, protected concurrently by band topology, were predicted and observed in experiments, unveiling a new horizon beyond the conventional bulk-edge correspondence. However, the control and manifestation of band topology in a hierarchy of dimensions, which is at the heart of HOTIs, have not yet been witnessed. Here, we propose theoretically and observe experimentally that tunable two-dimensional sonic crystals can be versatile systems to visualize and harness higher-order topology. In our systems, the two-dimensional acoustic bands mimic the quantum spin Hall effect, while the resultant one-dimensional helical edge states are gapped due to broken space-symmetry and carry quantized Zak phases, which then lead to zero-dimensional topological corner states. We demonstrate that topological transitions in the bulk and edges can be triggered independently by tuning the geometry of the sonic crystals. With complementary experiments and theories, our study reveals rich physics in HOTIs, opening a new route towards tunable topological metamaterials where novel applications, such as the topological transfer of acoustic energy among two-, one- and zero-dimensional modes, can be achieved. By tuning the geometry of a two-dimensional sonic crystal, its one-dimensional helical edge states become gapped and zero-dimensional topological corner states emerge. The band topology is thus manifested in a hierarchy of dimensions.
0

Broadband Photovoltaic Detectors Based on an Atomically Thin Heterostructure

Mingsheng Long et al.Feb 17, 2016
van der Waals junctions of two-dimensional materials with an atomically sharp interface open up unprecedented opportunities to design and study functional heterostructures. Semiconducting transition metal dichalcogenides have shown tremendous potential for future applications due to their unique electronic properties and strong light–matter interaction. However, many important optoelectronic applications, such as broadband photodetection, are severely hindered by their limited spectral range and reduced light absorption. Here, we present a p–g–n heterostructure formed by sandwiching graphene with a gapless band structure and wide absorption spectrum in an atomically thin p–n junction to overcome these major limitations. We have successfully demonstrated a MoS2–graphene–WSe2 heterostructure for broadband photodetection in the visible to short-wavelength infrared range at room temperature that exhibits competitive device performance, including a specific detectivity of up to 1011 Jones in the near-infrared region. Our results pave the way toward the implementation of atomically thin heterostructures for broadband and sensitive optoelectronic applications.
0

Topologically protected one-way edge mode in networks of acoustic resonators with circulating air flow

Xu Ni et al.May 13, 2015
Recent explorations of topology in physical systems have led to a new paradigm of condensed matters characterized by topologically protected states and phase transition, for example, topologically protected photonic crystals enabled by magneto-optical effects. However, in other wave systems such as acoustics, topological states cannot be simply reproduced due to the absence of similar magnetics-related sound–matter interactions in naturally available materials. Here, we propose an acoustic topological structure by creating an effective gauge magnetic field for sound using circularly flowing air in the designed acoustic ring resonators. The created gauge magnetic field breaks the time-reversal symmetry, and therefore topological properties can be designed to be nontrivial with non-zero Chern numbers and thus to enable a topological sonic crystal, in which the topologically protected acoustic edge-state transport is observed, featuring robust one-way propagation characteristics against a variety of topological defects and impurities. Our results open a new venue to non-magnetic topological structures and promise a unique approach to effective manipulation of acoustic interfacial transport at will.
0
Paper
Citation237
0
Save
0

Observation of higher-order non-Hermitian skin effect

Xiujuan Zhang et al.Sep 10, 2021
Hermitian theories play a major role in understanding the physics of most phenomena. It has been found only in the past decade that non-Hermiticity enables unprecedented effects such as exceptional points, spectral singularities and bulk Fermi arcs. Recent studies further show that non-Hermiticity can fundamentally change the topological band theory, leading to the non-Hermitian band topology and non-Hermitian skin effect, as confirmed in one-dimensional (1D) systems. However, in higher dimensions, these non-Hermitian effects remain unexplored in experiments. Here, we demonstrate the spin-polarized, higher-order non-Hermitian skin effect in two-dimensional (2D) acoustic metamaterials. Using a lattice of coupled whisper-gallery acoustic resonators, we realize a spinful 2D higher-order topological insulator (HOTI) where the spin-up and spin-down states are emulated by the anti-clockwise and clockwise modes, respectively. We find that the non-Hermiticity drives wave localizations toward opposite edge boundaries depending on the spin polarizations. More interestingly, for finite systems with both edge and corner boundaries, the higher-order non-Hermitian skin effect leads to wave localizations toward two corner boundaries for the bulk, edge and corner states in a spin-dependent manner. We further show that such a non-Hermitian skin effect enables rich wave manipulation through the loss configuration in each unit-cell. The reported spin-dependent, higher-order non-Hermitian skin effect reveals the interplay between higher-order topology and non-Hermiticity, which is further enriched by the spin degrees of freedom. This unveils a new horizon in the study of non-Hermitian physics and the design of non-Hermitian metamaterials.
0
Paper
Citation202
0
Save
0

Breaking the barriers: advances in acoustic functional materials

Hao Ge et al.Dec 22, 2017
Abstract Acoustics is a classical field of study that has witnessed tremendous developments over the past 25 years. Driven by the novel acoustic effects underpinned by phononic crystals with periodic modulation of elastic building blocks in wavelength scale and acoustic metamaterials with localized resonant units in subwavelength scale, researchers in diverse disciplines of physics, mathematics, and engineering have pushed the boundary of possibilities beyond those long held as unbreakable limits. More recently, structure designs guided by the physics of graphene and topological electronic states of matter have further broadened the whole field of acoustic metamaterials by phenomena that reproduce the quantum effects classically. Use of active energy-gain components, directed by the parity–time reversal symmetry principle, has led to some previously unexpected wave characteristics. It is the intention of this review to trace historically these exciting developments, substantiated by brief accounts of the salient milestones. The latter can include, but are not limited to, zero/negative refraction, subwavelength imaging, sound cloaking, total sound absorption, metasurface and phase engineering, Dirac physics and topology-inspired acoustic engineering, non-Hermitian parity–time synthetic active metamaterials, and one-way propagation of sound waves. These developments may underpin the next generation of acoustic materials and devices, and offer new methods for sound manipulation, leading to exciting applications in noise reduction, imaging, sensing and navigation, as well as communications.
Load More