JP
Jonas Peters
Author with expertise in Biological and Synthetic Hydrogenases: Mechanisms and Applications
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
32
(91% Open Access)
Cited by:
19,694
h-index:
94
/
i10-index:
231
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Benchmarking Heterogeneous Electrocatalysts for the Oxygen Evolution Reaction

Charles McCrory et al.Oct 30, 2013
Objective evaluation of the activity of electrocatalysts for water oxidation is of fundamental importance for the development of promising energy conversion technologies including integrated solar water-splitting devices, water electrolyzers, and Li-air batteries. However, current methods employed to evaluate oxygen-evolving catalysts are not standardized, making it difficult to compare the activity and stability of these materials. We report a protocol for evaluating the activity, stability, and Faradaic efficiency of electrodeposited oxygen-evolving electrocatalysts. In particular, we focus on methods for determining electrochemically active surface area and measuring electrocatalytic activity and stability under conditions relevant to an integrated solar water-splitting device. Our primary figure of merit is the overpotential required to achieve a current density of 10 mA cm(-2) per geometric area, approximately the current density expected for a 10% efficient solar-to-fuels conversion device. Utilizing the aforementioned surface area measurements, one can determine electrocatalyst turnover frequencies. The reported protocol was used to examine the oxygen-evolution activity of the following systems in acidic and alkaline solutions: CoO(x), CoPi, CoFeO(x), NiO(x), NiCeO(x), NiCoO(x), NiCuO(x), NiFeO(x), and NiLaO(x). The oxygen-evolving activity of an electrodeposited IrO(x) catalyst was also investigated for comparison. Two general observations are made from comparing the catalytic performance of the OER catalysts investigated: (1) in alkaline solution, every non-noble metal system achieved 10 mA cm(-2) current densities at similar operating overpotentials between 0.35 and 0.43 V, and (2) every system but IrO(x) was unstable under oxidative conditions in acidic solutions.
0

Benchmarking Hydrogen Evolving Reaction and Oxygen Evolving Reaction Electrocatalysts for Solar Water Splitting Devices

Charles McCrory et al.Feb 10, 2015
Objective comparisons of electrocatalyst activity and stability using standard methods under identical conditions are necessary to evaluate the viability of existing electrocatalysts for integration into solar-fuel devices as well as to help inform the development of new catalytic systems. Herein, we use a standard protocol as a primary screen for evaluating the activity, short-term (2 h) stability, and electrochemically active surface area (ECSA) of 18 electrocatalysts for the hydrogen evolution reaction (HER) and 26 electrocatalysts for the oxygen evolution reaction (OER) under conditions relevant to an integrated solar water-splitting device in aqueous acidic or alkaline solution. Our primary figure of merit is the overpotential necessary to achieve a magnitude current density of 10 mA cm(-2) per geometric area, the approximate current density expected for a 10% efficient solar-to-fuels conversion device under 1 sun illumination. The specific activity per ECSA of each material is also reported. Among HER catalysts, several could operate at 10 mA cm(-2) with overpotentials <0.1 V in acidic and/or alkaline solutions. Among OER catalysts in acidic solution, no non-noble metal based materials showed promising activity and stability, whereas in alkaline solution many OER catalysts performed with similar activity achieving 10 mA cm(-2) current densities at overpotentials of ~0.33-0.5 V. Most OER catalysts showed comparable or better specific activity per ECSA when compared to Ir and Ru catalysts in alkaline solutions, while most HER catalysts showed much lower specific activity than Pt in both acidic and alkaline solutions. For select catalysts, additional secondary screening measurements were conducted including Faradaic efficiency and extended stability measurements.
0

Catalytic conversion of nitrogen to ammonia by an iron model complex

John Anderson et al.Sep 1, 2013
Catalysis of the reduction of nitrogen to ammonia under mild conditions by a tris(phosphine)borane-supported iron complex indicates that a single iron site may be capable of stabilizing the various NxHy intermediates generated during catalytic ammonia formation. Industrial nitrogen fixation is performed on a vast scale by the Haber–Bosch process, which uses a solid-state iron catalyst at very high temperatures and pressures. Synthetic chemists have searched for decades for small metal-containing complexes to catalyse the transformation of nitrogen into ammonia in less extreme conditions, taking their lead from the nitrogenases found in plants and bacteria. To that end Jonas Peters and colleagues describe a tris(phosphine)borane-supported iron complex that catalyses the reduction of nitrogen into ammonia under mild conditions with reasonable efficiency. This suggests that a single iron site is sufficient for mediating nitrogen fixation, in line with recent biochemical and spectroscopic data that point to iron rather than the molybdenum also present in the FeMo cofactor or nitrogenase as the site of nitrogen binding and activation. The reduction of nitrogen (N2) to ammonia (NH3) is a requisite transformation for life1. Although it is widely appreciated that the iron-rich cofactors of nitrogenase enzymes facilitate this transformation2,3,4,5, how they do so remains poorly understood. A central element of debate has been the exact site or sites of N2 coordination and reduction6,7. In synthetic inorganic chemistry, an early emphasis was placed on molybdenum8 because it was thought to be an essential element of nitrogenases3 and because it had been established that well-defined molybdenum model complexes could mediate the stoichiometric conversion of N2 to NH3 (ref. 9). This chemical transformation can be performed in a catalytic fashion by two well-defined molecular systems that feature molybdenum centres10,11. However, it is now thought that iron is the only transition metal essential to all nitrogenases3, and recent biochemical and spectroscopic data have implicated iron instead of molybdenum as the site of N2 binding in the FeMo-cofactor12. Here we describe a tris(phosphine)borane-supported iron complex that catalyses the reduction of N2 to NH3 under mild conditions, and in which more than 40 per cent of the proton and reducing equivalents are delivered to N2. Our results indicate that a single iron site may be capable of stabilizing the various NxHy intermediates generated during catalytic NH3 formation. Geometric tunability at iron imparted by a flexible iron–boron interaction in our model system seems to be important for efficient catalysis13,14,15. We propose that the interstitial carbon atom recently assigned in the nitrogenase cofactor may have a similar role16,17, perhaps by enabling a single iron site to mediate the enzymatic catalysis through a flexible iron–carbon interaction18.
0

Synthetic Control of Excited-State Properties in Cyclometalated Ir(III) Complexes Using Ancillary Ligands

Jian Li et al.Feb 12, 2005
The synthesis and photophysical characterization of a series of (N,C(2')-(2-para-tolylpyridyl))2 Ir(LL') [(tpy)2 Ir(LL')] (LL' = 2,4-pentanedionato (acac), bis(pyrazolyl)borate ligands and their analogues, diphosphine chelates and tert-butylisocyanide (CN-t-Bu)) are reported. A smaller series of [(dfppy)2 Ir(LL')] (dfppy = N,C(2')-2-(4',6'-difluorophenyl)pyridyl) complexes were also examined along with two previously reported compounds, (ppy)2 Ir(CN)2- and (ppy)2 Ir(NCS)2- (ppy = N,C(2')-2-phenylpyridyl). The (tpy)2 Ir(PPh2CH2)2 BPh2 and [(tpy)2 Ir(CN-t-Bu)2](CF3SO3) complexes have been structurally characterized by X-ray crystallography. The Ir-C(aryl) bond lengths in (tpy)2 Ir(CN-t-Bu)2+ (2.047(5) and 2.072(5) A) and (tpy)2 Ir(PPh2CH2)2 BPh2 (2.047(9) and 2.057(9) A) are longer than their counterparts in (tpy)2 Ir(acac) (1.982(6) and 1.985(7) A). Density functional theory calculations carried out on (ppy)2 Ir(CN-Me)2+ show that the highest occupied molecular orbital (HOMO) consists of a mixture of phenyl-pi and Ir-d orbitals, while the lowest unoccupied molecular orbital is localized primarily on the pyridyl-pi orbitals. Electrochemical analysis of the (tpy)2 Ir(LL') complexes shows that the reduction potentials are largely unaffected by variation in the ancillary ligand, whereas the oxidation potentials vary over a much wider range (as much as 400 mV between two different LL' ligands). Spectroscopic analysis of the cyclometalated Ir complexes reveals that the lowest energy excited state (T1) is a triplet ligand-centered state (3LC) on the cyclometalating ligand admixed with 1MLCT (MLCT = metal-to-ligand charge-transfer) character. The different ancillary ligands alter the 1MLCT state energy mainly by changing the HOMO energy. Destabilization of the 1MLCT state results in less 1MLCT character mixed into the T1 state, which in turn leads to an increase in the emission energy. The increase in emission energy leads to a linear decrease in ln(k(nr)) (k(nr) = nonradiative decay rate). Decreased 1MLCT character in the T1 state also increases the Huang-Rhys factors in the emission spectra, decreases the extinction coefficient of the T1 transition, and consequently decreases the radiative decay rates (k(r)). Overall, the luminescence quantum yields decline with increasing emission energies. A linear dependence of the radiative decay rate (k(r)) or extinction coefficient (epsilon) on (1/deltaE)2 has been demonstrated, where deltaE is the energy difference between the 1MLCT and 3LC transitions. A value of 200 cm(-1) for the spin-orbital coupling matrix element 3LC absolute value(H(SO)) 1MLCT of the (tpy)2 Ir(LL') complexes can be deduced from this linear relationship. The (fppy)2 Ir(LL') complexes with corresponding ancillary ligands display similar trends in excited-state properties.
0

Electrocatalytic Hydrogen Evolution at Low Overpotentials by Cobalt Macrocyclic Glyoxime and Tetraimine Complexes

Xile Hu et al.Jun 28, 2007
Cobalt complexes supported by diglyoxime ligands of the type Co(dmgBF2)2(CH3CN)2 and Co(dpgBF2)2(CH3CN)2 (where dmgBF2 is difluoroboryl-dimethylglyoxime and dpgBF2 is difluoroboryl-diphenylglyoxime), as well as cobalt complexes with [14]-tetraene-N4 (Tim) ligands of the type [Co(TimR)X2]n+ (R=methyl or phenyl, X=Br or CH3CN; n=1 with X=Br and n=3 with X=CH3CN), have been observed to evolve H2 electrocatalytically at potentials between -0.55 V and -0.20 V vs SCE in CH3CN. The complexes with more positive Co(II/I) redox potentials exhibited lower activity for H2 production. For the complexes Co(dmgBF2)2(CH3CN)2, Co(dpgBF2)2(CH3CN)2, [Co(TimMe)Br2]Br, and [Co(TimMe)(CH3CN)2](BPh4)3, bulk electrolysis confirmed the catalytic nature of the process, with turnover numbers in excess of 5 and essentially quantitative faradaic yields for H2 production. In contrast, the complexes [Co(TimPh/Me)Br2]Br and [Co(TimPh/Me)(CH3CN)2](BPh4)3 were less stable, and bulk electrolysis only produced faradaic yields for H2 production of 20-25%. Cyclic voltammetry of Co(dmgBF2)2(CH3CN)2, [Co(TimMe)Br2]+, and [Co(TimMe)(CH3CN)2]3+ in the presence of acid revealed redox waves consistent with the Co(III)-H/Co(II)-H couple, suggesting the presence of Co(III) hydride intermediates in the catalytic system. The potentials at which these Co complexes catalyzed H2 evolution were close to the reported thermodynamic potentials for the production of H2 from protons in CH3CN, with the smallest overpotential being 40 mV for Co(dmgBF2)2(CH3CN)2 determined by electrochemistry. Consistent with this small overpotential, Co(dmgBF2)2(CH3CN)2 was also able to oxidize H2 in the presence of a suitable conjugate base. Digital simulations of the electrochemical data were used to study the mechanism of H2 evolution catalysis, and these studies are discussed.
Load More