CZ
Chengwei Zhou
Author with expertise in Speech Enhancement Techniques
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
10
(0% Open Access)
Cited by:
1,493
h-index:
24
/
i10-index:
43
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Direction-of-Arrival Estimation for Coprime Array via Virtual Array Interpolation

Chengwei Zhou et al.Sep 26, 2018
Coprime arrays can achieve an increased number of degrees of freedom by deriving the equivalent signals of a virtual array. However, most existing methods fail to utilize all information received by the coprime array due to the non-uniformity of the derived virtual array, resulting in an inevitable estimation performance loss. To address this issue, we propose a novel virtual array interpolation-based algorithm for coprime array direction-of-arrival (DOA) estimation in this paper. The idea of array interpolation is employed to construct a virtual uniform linear array such that all virtual sensors in the non-uniform virtual array can be utilized, based on which the atomic norm of the second-order virtual array signals is defined. By investigating the properties of virtual domain atomic norm, it is proved that the covariance matrix of the interpolated virtual array is related to the virtual measurements under the Hermitian positive semi-definite Toeplitz condition. Accordingly, an atomic norm minimization problem with respect to the equivalent virtual measurement vector is formulated to reconstruct the interpolated virtual array covariance matrix in a gridless manner, where the reconstructed covariance matrix enables off-grid DOA estimation. Simulation results demonstrate the performance advantages of the proposed DOA estimation algorithm for coprime arrays.
0

A Robust and Efficient Algorithm for Coprime Array Adaptive Beamforming

Chengwei Zhou et al.May 16, 2017
Coprime array offers a larger array aperture than uniform linear array with the same number of physical sensors, and has a better spatial resolution with increased degrees of freedom. However, when it comes to the problem of adaptive beamforming, the existing adaptive beamforming algorithms designed for the general array cannot take full advantage of coprime feature offered by the coprime array. In this paper, we propose a novel coprime array adaptive beamforming algorithm, where both robustness and efficiency are well balanced. Specifically, we first decompose the coprime array into a pair of sparse uniform linear subarrays and process their received signals separately. According to the property of coprime integers, the direction-of-arrival (DOA) can be uniquely estimated for each source by matching the super-resolution spatial spectra of the pair of sparse uniform linear subarrays. Further, a joint covariance matrix optimization problem is formulated to estimate the power of each source. The estimated DOAs and their corresponding power are utilized to reconstruct the interference-plus-noise covariance matrix and estimate the signal steering vector. Theoretical analyses are presented in terms of robustness and efficiency, and simulation results demonstrate the effectiveness of the proposed coprime array adaptive beamforming algorithm.
0

Compressive sensing‐based coprime array direction‐of‐arrival estimation

Chengwei Zhou et al.Apr 28, 2017
A coprime array has a larger array aperture as well as increased degrees-of-freedom (DOFs), compared with a uniform linear array with the same number of physical sensors. Therefore, in a practical wireless communication system, it is capable to provide desirable performance with a low-computational complexity. In this study, the authors focus on the problem of efficient direction-of-arrival (DOA) estimation, where a coprime array is incorporated with the idea of compressive sensing. Specifically, the authors first generate a random compressive sensing kernel to compress the received signals of coprime array to lower-dimensional measurements, which can be viewed as a sketch of the original received signals. The compressed measurements are subsequently utilised to perform high-resolution DOA estimation, where the large array aperture of the coprime array is maintained. Moreover, the authors also utilise the derived equivalent virtual array signal of the compressed measurements for DOA estimation, where the superiority of coprime array in achieving a higher number of DOFs can be retained. Theoretical analyses and simulation results verify the effectiveness of the proposed methods in terms of computational complexity, resolution, and the number of DOFs.