NP
Nicholas Potter
Author with expertise in Hydrological Modeling and Water Resource Management
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
3
(67% Open Access)
Cited by:
671
h-index:
17
/
i10-index:
23
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Water balance modeling over variable time scales based on the Budyko framework – Model development and testing

Lu Zhang et al.Jul 28, 2008
Partitioning of precipitation into evapotranspiration and runoff is controlled by climate and catchment characteristics. The degree of control exerted by these factors varies with the spatial and temporal scales of processes modeled. The Budyko framework or the “limits” concept was used to model water balance at four temporal scales (mean annual, annual, monthly and daily). The method represents a top-down approach to hydrologic modeling and is expected to achieve parsimony of model parameters. Daily precipitation, potential evapotranspiration, and streamflow from 265 catchments in Australia were used. On a mean annual basis, the index of dryness defined as the ratio of potential evapotranspiration to precipitation was confirmed to be a dominant factor in determining the water balance with one model parameter. Analysis of the data, however, suggested increased model complexity is necessary on finer time scale such as monthly. In response, the Budyko framework for mean annual water balance was extended to include additional factors and this resulted in a parsimonious lumped conceptual model on shorter-time scale. The model was calibrated and tested against measured streamflow at variable time scales and showed promising results. The strengths of the model are consistent water balance relationships across different time scales, and model parsimony and robustness. As result, the model has the potential to be used to predict streamflow for ungauged catchments.
0
Paper
Citation431
0
Save
0

The influence of multiyear drought on the annual rainfall‐runoff relationship: AnAustralian perspective

Margarita Saft et al.Mar 13, 2015
Abstract Most current long‐term (decadal and longer) hydrological predictions implicitly assume that hydrological processes are stationary even under changing climate. However, in practice, we suspect that changing climatic conditions may affect runoff generation processes and cause changes in the rainfall‐runoff relationship. In this article, we investigate whether temporary but prolonged (i.e., of the order of a decade) shifts in rainfall result in changes in rainfall‐runoff relationships at the catchment scale. Annual rainfall and runoff records from south‐eastern Australia are used to examine whether interdecadal climate variability induces changes in hydrological behavior. We test statistically whether annual rainfall‐runoff relationships are significantly different during extended dry periods, compared with the historical norm. The results demonstrate that protracted drought led to a significant shift in the rainfall‐runoff relationship in ∼46% of the catchment‐dry periods studied. The shift led to less annual runoff for a given annual rainfall, compared with the historical relationship. We explore linkages between cases where statistically significant changes occurred and potential explanatory factors, including catchment properties and characteristics of the dry period (e.g., length, precipitation anomalies). We find that long‐term drought is more likely to affect transformation of rainfall to runoff in drier, flatter, and less forested catchments. Understanding changes in the rainfall‐runoff relationship is important for accurate streamflow projections and to help develop adaptation strategies to deal with multiyear droughts.
0
Paper
Citation239
0
Save