SR
S. Regan
Author with expertise in Laser-Plasma Interactions and Particle Acceleration
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
7
(43% Open Access)
Cited by:
953
h-index:
54
/
i10-index:
209
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Suppression of glymphatic fluid transport in a mouse model of Alzheimer's disease

Weiguo Peng et al.May 25, 2016
Glymphatic transport, defined as cerebrospinal fluid (CSF) peri-arterial inflow into brain, and interstitial fluid (ISF) clearance, is reduced in the aging brain. However, it is unclear whether glymphatic transport affects the distribution of soluble Aβ in Alzheimer's disease (AD). In wild type mice, we show that Aβ40 (fluorescently labeled Aβ40 or unlabeled Aβ40), was distributed from CSF to brain, via the peri-arterial space, and associated with neurons. In contrast, Aβ42 was mostly restricted to the peri-arterial space due mainly to its greater propensity to oligomerize when compared to Aβ40. Interestingly, pretreatment with Aβ40 in the CSF, but not Aβ42, reduced CSF transport into brain. In APP/PS1 mice, a model of AD, with and without extensive amyloid-β deposits, glymphatic transport was reduced, due to the accumulation of toxic Aβ species, such as soluble oligomers. CSF-derived Aβ40 co-localizes with existing endogenous vascular and parenchymal amyloid-β plaques, and thus, may contribute to the progression of both cerebral amyloid angiopathy and parenchymal Aβ accumulation. Importantly, glymphatic failure preceded significant amyloid-β deposits, and thus, may be an early biomarker of AD. By extension, restoring glymphatic inflow and ISF clearance are potential therapeutic targets to slow the onset and progression of AD.
0
Citation444
0
Save
0

Progress towards ignition on the National Ignition Facility

M. Edwards et al.Jul 1, 2013
The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory includes a precision laser system now capable of delivering 1.8 MJ at 500 TW of 0.35-μm light to a target. NIF has been operational since March 2009. A variety of experiments have been completed in support of NIF's mission areas: national security, fundamental science, and inertial fusion energy. NIF capabilities and infrastructure are in place to support its missions with nearly 60 X-ray, optical, and nuclear diagnostic systems. A primary goal of the National Ignition Campaign (NIC) on the NIF was to implode a low-Z capsule filled with ∼0.2 mg of deuterium-tritium (DT) fuel via laser indirect-drive inertial confinement fusion and demonstrate fusion ignition and propagating thermonuclear burn with a net energy gain of ∼5–10 (fusion yield/input laser energy). This requires assembling the DT fuel into a dense shell of ∼1000 g/cm3 with an areal density (ρR) of ∼1.5 g/cm2, surrounding a lower density hot spot with a temperature of ∼10 keV and a ρR ∼0.3 g/cm2, or approximately an α-particle range. Achieving these conditions demand precise control of laser and target parameters to allow a low adiabat, high convergence implosion with low ablator fuel mix. We have demonstrated implosion and compressed fuel conditions at ∼80–90% for most point design values independently, but not at the same time. The nuclear yield is a factor of ∼3–10× below the simulated values and a similar factor below the alpha dominated regime. This paper will discuss the experimental trends, the possible causes of the degraded performance (the off-set from the simulations), and the plan to understand and resolve the underlying physics issues.
0

The next-generation magnetic recoil spectrometer (MRSnext) on OMEGA and NIF for diagnosing ion temperature, yield, areal density, and alpha heating

C. Wink et al.Aug 1, 2024
The next-generation magnetic recoil spectrometer (MRSnext) is being designed to replace the current MRS at the National Ignition Facility and OMEGA for measurements of the neutron spectrum from an inertial confinement fusion implosion. The MRSnext will provide a far-superior performance and faster data turnaround than the current MRS systems, i.e., a 2× and 6× improvement in energy resolution at the NIF and OMEGA, respectively, and 20× improvement in data turnaround time. The substantially improved performance of the MRSnext is enabled by using electromagnets that provide a short focal plane (12–16 cm) and unprecedented flexibility for a wide range of applications. In addition to being able to measure neutron yield, apparent ion temperature, areal density, and plasma-flow velocity over a wide range of yields, the NIF MRSnext will be able to directly, uniquely assess the alpha heating of the fuel ions through measurements of the alpha knock-on tail in the neutron spectrum. The goal is to implement a radiation-hard electronic detection system capable of providing rapid data acquisition and analysis. The development of the MRSnext will also set the foundation for the more advanced, time-resolving MRSt and serve as a testbed for its implementation on the NIF.
0
Citation1
0
Save
0

Ex situ calibration of the scattered-light time-history diagnostic on the National Ignition Facility.

Steven Kostick et al.Sep 1, 2024
The scattered-light time-history diagnostic (SLTD) suite measures time-resolved scattered light in three wavelength bands: stimulated Brillouin scattering (350-352 nm), stimulated Raman scattering (430-760 nm), and plasma emission at half the laser frequency (695-735 nm), at 15 locations around the National Ignition Facility (NIF) target chamber. The SLTD, along with the full-aperture backscatter station (FABS), collects scattered light from direct- and indirect-drive inertial confinement fusion experiments. The SLTD calibration was revisited after a discrepancy between FABS and SLTD measurements was observed on NIF polar direct-drive [Skupsky et al., Phys. Plasmas 11, 2763 (2004)] experiments. An integrated calibration of the SLTD was performed for the first time, and individual components were also calibrated for the wavelengths of 351, 527, and 532 nm. The optical transmission of the instrument was measured to be (1.12 ± 0.04) × 10-7 and (1.96 ± 0.11) × 10-7 for the wavelengths of 351 and 532 nm, respectively. The revised calibration at 351 nm brings the SLTD measured scattered energy in agreement with the FABS measured scattered energy after additionally accounting for the degradation of an optical element in FABS. This decreased the inferred absorption by 7% for a representative experiment. However, discrepancies remain between FABS and SLTD measurements in the SRS band (532 nm).
0

The crucial role of diagnostics in achieving ignition on the National Ignition Facility (NIF)

J. Kilkenny et al.Aug 1, 2024
Well over 100 diagnostics can operate on the National Ignition Facility (NIF) as a result of several decades of development on NIF, and before that on Nova, OMEGA, and earlier LLNL lasers. A subset of these have guided the approach to achieving ignition on the NIF in 2022 [H. Abu-Shawareb et al. (Indirect Drive ICF Collaboration), Phys. Rev. Lett. 129(7), 075001 (2022)]. Achieving ignition on NIF has required many types of experiments with this core set of diagnostics, some constraining known unknowns and some revealing surprises—arguably unknown unknowns. Early design work realized that the extreme precision required for ignition on NIF would require fine-tuning by experiment, that is, measuring and adjusting known unknowns. Many examples are given where the use of the core set of ignition diagnostics in experimental arrangements called platforms demonstrated control of the key theoretical parameters defined as shape, adiabat, velocity, and mix. The direction of the adjustments to input conditions is found either by trend analysis or, in many cases, by observing from the diagnostic data the direction to make an adjustment. In addition, diagnostics have revealed some unexpected or neglected known issues, which degrade performance, or unexpected issues, unknown unknowns. Some of these factors had been previously considered, but underestimated or difficult to calculate at the time. The overall methodology can be described as a variant of Popper's falsifiability philosophy [K. Popper, The Logic of Scientific Discovery (Hutchinson, 1974)]. This paper summarizes the role of ignition diagnostics in terms of falsification or validation of theory or experimental setup as well as uncovering unexpected issues. The journey to ignition started in the seventies with a 1-µm wavelength laser producing disastrous results. Diagnostics have guided us to the recent multi-decadal goal of demonstrating ignition and burn in the laboratory.