FC
Fulong Cai
Author with expertise in Tectonic and Geochronological Evolution of Orogens
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
7
(57% Open Access)
Cited by:
1,177
h-index:
30
/
i10-index:
51
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

The Andean-type Gangdese Mountains: Paleoelevation record from the Paleocene–Eocene Linzhou Basin

Lin Ding et al.Mar 9, 2014
Paleoelevation reconstruction using oxygen isotopes is making a significant contribution to understanding the Cenozoic uplift of the Himalayas and the Tibetan Plateau. This paper presents new oxygen and carbon isotopic compositions from well dated Tertiary paleosols, lacustrine calcareous carbonates, and marls from the Nianbo (60–54 Ma) and upper Pana Formations (51–48 Ma) of the Linzizong Group in the Linzhou (Penbo) Basin. The sediments of the Nianbo Formation, which are >180 m-thick, were deposited in alluvial fans, braided rivers, fan deltas, and on nearshore to offshore lacustrine settings, whereas those of the upper Pana Formation are >100 m-thick and are comprised predominantly of proximal alluvial fan and braided river deposits. Correlations between the lithofacies and stable isotopic compositions suggest that the basin was mainly a hydrologically open environment. It is confirmed that the δ18Oc and δ13Cc values from Nianbo and Pana Formations have not yet been reset by late-stage diagenesis based on petrographic examination, oxygen isotope of the fossil ostracodes, and tectonic deformation of strata. The paleoelevations are reconstructed using the corrected most negative paleosurface water δ18Opsw values. These imply that the Linzhou area had attained an elevation of 4500±400 m during the period of the Indo-Asian collision, i.e., achieved a near-present elevation, and may form an Andean-type mountain range stretching the Gangdese arc before collision. The Gangdese Mountains probably maintained high elevations since at least the Paleocene and could play a crucial role in the climate change in the interior of the Tibetan Plateau during the Early Cenozoic. The paleogeomorphic scenario of the Eocene Tibet is proposed to exist at two high mountains in excess of 4500 m that sandwiched a low elevation basin.
0
Paper
Citation394
0
Save
0

Provenance analysis of the Mesozoic Hoh‐Xil‐Songpan‐Ganzi turbidites in northern Tibet: Implications for the tectonic evolution of the eastern Paleo‐Tethys Ocean

Lin Ding et al.Jan 1, 2013
Mesozoic strata of the Hoh‐Xil‐Songpan‐Ganzi complex in northern Tibet are exposed in a vast (> 370,000 km 2 ) triangle‐shaped orogenic belt bound by the Longmen Shan thrust belt in the east, the Kunlun terrane and North China block in the north, and the Qiangtang terrane and Yidun arc in the south. These strata consist of Middle–Upper Triassic submarine fan and deep marine facies rocks that were deposited in the Paleo‐Tethys Ocean. Late Triassic–Early Jurassic contractional deformation in the eastern Hoh‐Xil‐Songpan‐Ganzi complex marks the demise of the Paleo‐Tethys Ocean basin and the accretion of the Gondwana‐derived Qiangtang terrane to Eurasia. We conducted geological mapping, regional stratigraphic analyses, and U‐Pb geochronology of detrital zircons ( n = 4128) on the Mesozoic sequences exposed in the Hoh‐Xil‐Songpan‐Ganzi complex, Kunlun terrane, and Qiangtang terrane. We identify for the first time marine silciclastic sandstone and shale of Jurassic age in the northwestern Hoh‐Xil‐Songpan‐Ganzi complex that unconformably overlie Upper Triassic turbidites. Zircon age data indicate that the Middle–Upper Triassic marine gravity‐flow deposits of the Hoh‐Xil‐Songpan‐Ganzi complex were shed from the North and South China blocks, and Middle–Late Triassic ultrahigh‐pressure Qinling–Dabie orogenic belt, as well as the Kunlun and Qiangtang terranes. In addition, the detrital zircon results suggest vast sediment source to sink distances (>1500 km) for the Middle–Upper Triassic Hoh‐Xil‐Songpan‐Ganzi strata, which is consistent with tectonic models for the Paleo‐Tethys Ocean basin that incorporate significant components of horizontal tectonic transport like opening of large back‐arc basins in response to oceanic slab rollback.
0
Paper
Citation247
0
Save