XL
Xiaojun Li
Author with expertise in 3D Bioprinting Technology
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
5
(60% Open Access)
Cited by:
0
h-index:
5
/
i10-index:
4
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

LIN28B controls the regenerative capacity of neonatal murine auditory supporting cells through activation of mTOR signaling

Xiaojun Li et al.May 31, 2020
ABSTRACT Mechano-sensory hair cells within the inner ear cochlea are essential for the detection of sound. In mammals, cochlear hair cells are only produced during development and their loss, due to disease or trauma, is a leading cause of deafness. In the immature cochlea, prior to the onset of hearing, hair cell loss stimulates neighboring supporting cells to act as hair cell progenitors and produce new hair cells. However, for reasons unknown, such regenerative capacity (plasticity) is lost once supporting cells undergo maturation. Here, we demonstrate that the RNA binding protein LIN28B plays an important role in the production of hair cells by supporting cells and provide evidence that the developmental drop in supporting cell plasticity in the mammalian cochlea is, at least in part, a product of declining LIN28B-mTOR activity. Employing murine cochlear organoid and explant cultures to model mitotic and non-mitotic mechanisms of hair cell generation, we show that loss of Lin28b function, due to its conditional deletion, or due to overexpression of the antagonistic miRNA let-7g , suppressed Akt-mTORC1 activity and renders young, immature supporting cells incapable of generating hair cells. Conversely, we found that LIN28B overexpression increased Akt-mTORC1 activity and allowed supporting cells that were undergoing maturation to de-differentiate into progenitor-like cells and to produce hair cells via mitotic and non-mitotic mechanisms. Finally, using the mTORC1 inhibitor rapamycin, we demonstrate that LIN28B promotes supporting cell plasticity in an mTORC1-dependent manner. SIGNIFICANCE STATEMENT Cochlear hair cell loss is a leading cause of deafness in humans and other mammals. In the immature cochlea lost hair cells are regenerated by neighboring glia-like supporting cells. However, for reasons unknown, such regenerative capacity is rapidly lost as supporting cells undergo maturation. Here we identify a direct link between LIN28B-mTOR activity and supporting cell plasticity. Mimicking later developmental stages, we found that loss of the RNA binding protein LIN28B attenuated mTOR signaling and rendered young, immature supporting cells incapable of producing hair cells. Conversely, we found that re-expression of LIN28B reinstated the ability of maturing supporting cells to revert to a progenitor-like state and generate hair cells via activation of mTOR signaling.
4

Reactivation of the progenitor gene Trim71 enhances the mitotic and hair cell-forming potential of cochlear supporting cells

Xiaojun Li et al.Jan 13, 2023
Cochlear hair cell loss is a leading cause of deafness in humans. Neighboring supporting cells have some capacity to regenerate hair cells. However, their regenerative potential sharply declines as supporting cells undergo maturation (postnatal day 5 in mice). We recently reported that reactivation of the RNA-binding protein LIN28B restores the hair cell-regenerative potential of P5 cochlear supporting cells. Here, we identify the LIN28B target Trim71 as a novel and equally potent enhancer of supporting cell plasticity. TRIM71 is a critical regulator of stem cell behavior and cell reprogramming, however, its role in cell regeneration is poorly understood. Employing an organoid-based assay, we show that TRIM71 reactivation increases the mitotic and hair cell-forming potential of P5 cochlear supporting cells by facilitating their de-differentiation into progenitor-like cells. Our mechanistic work indicates that TRIM71’s RNA-binding activity is essential for such ability, and our transcriptomic analysis identifies gene modules that are linked to TRIM71 and LIN28B-mediated supporting cell reprogramming. Furthermore, our study uncovers that the TRIM71-LIN28B target Hmga2 is essential for supporting cell self-renewal and hair cell formation.
0

Sequential delivery of IL-10 and icariin using nanoparticle/hydrogel hybrid system for prompting bone defect repair

Xiaojun Li et al.Dec 1, 2024
The treatment of large bone defects remains challenging due to the lack of spatiotemporal management of the immune microenvironment, inflammation response and bone remodeling. To address these issues, we designed and developed a nanoparticle/hydrogel hybrid system that can achieve the combined and sequential delivery of an anti-inflammatory factor (IL-10) and osteogenic drug (icariin, ICA). A photopolymerizable composite hydrogel was prepared by combining gelatin methacryloyl (GelMA) and heparin-based acrylated hyaluronic acid (HA) hydrogels containing IL-10, and poly(dl-lactide-co-glycolide) (PLGA)-HA nanoparticles loaded with ICA were incorporated into the composite hydrogels. The nanoparticle/hydrogel hybrid system demonstrates an array of features including mechanical strength, injectability and photo-crosslinking. The rapid release of IL-10 from the hydrogel effectively exerts immunomodulatory activity, whereas the long-term sustained release of icariin from the PLGA-HA nanoparticles significantly triggers the osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs). Notably, the combined delivery of IL-10 and ICA from the hybrid system exhibit a synergistic effect for bone remodeling in a critical cranial defect rat model. Our findings indicate the importance of the immunomodulatory microenvironment and osteogenic differentiation for high-quality skull remodeling, and thus the dual-factor releasing nanoparticle/hydrogel hybrid system could be a promising candidate for repairing bone defects.