PS
Pengxi Shi
Author with expertise in Molecular Mechanisms of Cardiac Remodeling and Repair
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
2
(100% Open Access)
Cited by:
0
h-index:
1
/
i10-index:
1
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

MicroRNA-19a-3p augments TGF-β1-induced cardiac fibroblast activation <i>via</i> targeting BAMBI

Pengxi Shi et al.Jan 1, 2024
The main pathogenic factor leading to cardiac remodeling and heart failure is myocardial fibrosis. Recent research indicates that microRNAs are essential for the progress of cardiac fibrosis. Myocardial fibrosis is considered to be alleviated through the bone morphogenetic protein and activin membrane-bound inhibitor (BAMBI), which does this by blocking the transforming growth factor β1 (TGF-β1) signaling pathway. Here, this study sought to elucidate the post-transcriptional regulation of miR-19a-3p on BAMBI and its role in TGF-β1-induced cardiac fibroblast activation. Transverse aortic constriction (TAC) caused both myocardial interstitial and perivascular collagen deposition. RT-PCR showed that miR-19a-3p was upregulated in the myocardial tissue of cardiac fibrosis, and TGF-β1 induced an increase of miR-19a-3p expression in cardiac fibroblasts. The dual-luciferase reporter test and qRT-PCR confirmed that miR-19a-3p directly combined with BAMBI mRNA 3'UTR, thus reduced BAMBI expression, which diminished the capability of BAMBI to inhibit TGF-β1. Furthermore, miR-19a-3p mimic increased the activation of TGF-β1/SMAD2/3 pathway signaling, which supported cardiac fibroblast activation, which blocked by overexpression of BAMBI. These findings imply that miR-19a-3p enhances the activation of TGF-β1/SMAD2/3 by inhibiting BAMBI, further boosting the activation of cardiac fibroblasts, and may thus offer a novel strategy to tackling myocardial fibrosis.
0

ECSIT‐X4 is Required for Preventing Pressure Overload‐Induced Cardiac Hypertrophy via Regulating Mitochondrial STAT3

Xia Lu et al.Jan 2, 2025
Abstract Mitochondrial dysfunction is a key factor in exacerbating pressure overload‐induced cardiac hypertrophy and is linked to increased morbidity and mortality. ECSIT, a crucial adaptor for inflammation and mitochondrial function, has been reported to express multiple transcripts in various species and tissues, leading to distinct protein isoforms with diverse subcellular localizations and functions. However, whether an unknown ECSIT isoform exists in cardiac cells and its potential role in regulating mitochondrial function and pathological cardiac hypertrophy has remained unclear. This study identified a 42‐kDa ECSIT isoform encoded by the transcript variant Ecsit‐X4, which is highly expressed in the mitochondria of adult cardiomyocytes but down‐regulated in hypertrophic human heart samples and TAC‐treated mouse hearts. AAV9‐mediated Ecsit‐X4 gene therapy, administered either before or after TAC surgery, significantly attenuated cardiac hypertrophy. Cardiomyocyte‐specific Ecsit deficiency worsened TAC‐induced cardiac hypertrophy, while Ecsit‐X4 compensation independently rescued hypertrophic phenotypes in Ecsit cKO mice. Mechanistically, ECSIT‐X4 localized to the mitochondria and interacted with STAT3, leading to increased STAT3 levels and enhanced serine 727 phosphorylation in cardiomyocyte mitochondria, thereby promoting strong mitochondrial bioenergetics. This study identified a novel transcript variant of ECSIT localized in the mitochondria of adult cardiomyocytes and highlights its potential as a therapeutic target for heart failure.