IC
I. Coffey
Author with expertise in Plasma Physics and Fusion
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
3
(100% Open Access)
Cited by:
0
h-index:
29
/
i10-index:
60
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Interaction of SPI pellets with plasma on JET and associated disruptions

S. Gerasimov et al.Jun 7, 2024
Abstract The presented data refer to the Shattered Pellet Injector (SPI) experiments carried out at JET in 2019–2020. This paper is a full journal version of the data originally presented as posters at TMPDM_2020 and EPS_2021. This paper presents various aspects of the interaction of pellets with plasma and associated disruptions. The experiment was performed with I p = (1.1–3.1) MA plasmas and mainly with Ne + D 2 pellet composition, but also with Ar pellets. The Current Quench (CQ) time, τ 80−20 , is the key characteristic of mitigation effectiveness. A pellet with a high content of Ne or Ar can reduce the CQ duration below the upper required JET threshold. Plasmas with high (thermal + internal poloidal magnetic) pre-disruptive plasma energy require a high content of Ne pellets to obtain a short CQ duration. Pellets with a small amount of Ne (and accordingly large amount of D), instead of causing a mitigated CQ, create the conditions for a ‘cold’ Vertical Displacement Events (VDE). The SPI was applied to plasma with different status: mainly to normal (‘healthy’) plasma, i.e. not prone to disruption, post-disruptive and VDE plasma. This study shows that SPI effectiveness in terms of CQ duration and, accordingly, EM loads does not depend on the state of the plasma, whether it is ‘healthy’ or post-disruptive plasma. SPI has been shown to reduce the axisymmetric vertical vessel reaction forces by about (30–40) % compared to unmitigated disruptions. On JET, the VDE, whether ‘hot’ or ‘cold’, always creates the conditions for a toroidal asymmetry in the plasma, so the VDE on the JET is referred to as Asymmetric VDE (AVDE). The interrupting of VDE and prevention of AVDE with SPI has been demonstrated. Thus, the effectiveness of disruption mitigation using SPI has been confirmed.
0

Impurity study in the dimensionless and dimensional isotope identity experiment between JET Deuterium and Tritium L-mode plasmas

A. Czarnecka et al.Nov 26, 2024
Abstract The behaviour of impurities in fusion plasmas is of crucial importance for achieving sustained fusion reactions, and understanding similarities and differences between Deuterium (D) and Tritium (T) plasmas is needed to assess potential changes from DD to DT in ITER and future reactors. The first dimensionless and dimensional isotope identity experiments between Deuterium (D) and Tritium (T) L-mode plasmas were conducted at the JET W/Be wall. In the first approach, the discharges with matched ρ ∗, ν ∗, β n , q , and T e / T i were compared to emphasize direct isotope effects, while in the dimensional approach engineering parameters such as toroidal magnetic field B T , plasma current I p , plasma electron density and NBI power P NBI were matched. The dimensionless isotope scaling showed an improvement in global confinement and local transport in T plasmas in comparison to the matched D one (Cordey et al 1999 Nucl. Fusion 39 301). Detailed impurity analyses using VUV, visible spectroscopy, SXR cameras, and bolometry revealed that T plasmas exhibited higher radiation and impurity content, particularly Ni and W, compared to D plasmas. Understanding the origin of the increased impurity content is addressed in this paper. The dimensionless experiments showed differences in impurity transport. The Be source behaviour varied: D plasmas had higher Be influx in the dimensionless approach due to lower electron density and enhanced sputtering (Saibene et al 1999 Nucl. Fusion 39 1133), while T plasmas showed a higher Be source in the dimensional experiments, highlighting isotope mass effects. W in the divertor region was not sputtered by hydrogen isotopes. W in the divertor region was not sputtered by hydrogen isotopes. In the dimensionless experiments, W sputtering was primarily influenced by Ni in T plasmas and by Be in D plasmas. However, in the dimensional approach, Be played a more significant role in W sputtering within T plasmas. MHD instabilities, including ST oscillations, were present in all cases other ones were correlated with NBI power levels; higher NBI power led to elevated levels of Be, Ni, and W impurities. The comprehensive comparison underscores the necessity of accounting for isotope mass effects in predictive modelling and optimization of plasma performance in fusion reactors.