JD
James Day
Author with expertise in Tectonic and Geochronological Evolution of Orogens
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
8
(63% Open Access)
Cited by:
722
h-index:
55
/
i10-index:
149
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Exploring Emerald Global Geochemical Provenance through Fingerprinting and Machine Learning Methods

Raquel Alonso-Perez et al.Aug 10, 2024
Emeralds – the green colored variety of beryl – occur as gem-quality specimens in over fifty deposits globally. While digital traceability methods for emerald have limitations, sample-based approaches offer robust alternatives, particularly for determining the geographic origin of emerald. Three factors make emerald suitable for provenance studies and hence for developing models for origin determination. First, the diverse elemental chemistry of emerald at minor (<1 wt.%) and trace levels (<1 to 100's ppmw) exhibits unique inter-element fractionations between global deposits. Second, minimally destructive techniques, including laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), enable measurement of these diagnostic elemental signatures. Third, when applied to extensive datasets, machine learning (ML) techniques enable the creation of predictive models and statistical discrimination with adequate characterization of the deposits. This study employs a carefully selected dataset comprising more than 1000 LA-ICP-MS analyses of gem-quality emeralds, enriched with new analyses. This dataset represents the largest available for global emerald deposits. We conducted unsupervised exploratory analysis using Principal Component Analysis (PCA). For machine learning-based classification, we employed Support Vector Machine Classification (SVM-C), achieving an initial accuracy rate of 79%. This was enhanced to 96.8% through the use of hierarchical SVM-C with PCA filters as our modeling approach. The ML models were trained using the concentrations of eight statistically significant elements (Li, V, Cr, Fe, Sc, Ga, Rb, Cs). By leveraging high-quality LA-ICP-MS data and ML techniques, accurate identification of the geographical origin of emerald becomes possible. These models are important for accurate provenance of emerald, and from a geochemical perspective, for understanding the formation environments of beryl-bearing pegmatites and shales.
0

Fundamental constraints and questions from the study of martian meteorites and the need for returned samples

Arya Udry et al.Jan 6, 2025
Physical materials from planetary bodies are crucial for understanding fundamental processes that constrain the evolution of the solar system, as samples can be analyzed at high precision and accuracy in Earth-based laboratories. Mars is the only planet outside of Earth from which we possess samples in the form of meteorites. Martian meteorites (n > 350) have enabled constraints to be placed on various aspects of the red planet’s formation and evolution, notably: that Mars accreted and differentiated rapidly; that the planet has a complex volatile element evolution; and that it has always been volcanically active with a rich and diverse magmatic history. Meteorites have limitations, however, with lack of field context, restricted lithological diversity compared to the martian surface, and with no sampling of a major portion of Mars’ history between 4.1 and 2.4 billion years ago. Returned samples from Mars have the potential to fill these gaps and answer many open questions driven by the study of meteorites, as well as reveal new fundamental research questions. Key questions that Mars Sample Return is likely to answer regard the basic evolution of the martian interior and surface, its potential for habitability and the possibility of past life, and calibration of age dating of the martian surface. Samples of various lithologies and different ages collected at Jezero crater by the Perseverance rover will aid in better understanding our own planet and will answer outstanding questions regarding Mars’ future geological evolution and habitability.
0

Continental flood basalts sample oxidized mantle sources

Robert Nicklas et al.Oct 1, 2024
Large igneous provinces (LIP) are vast (0.2 to >1 Mkm3) outpourings of basaltic lava and voluminous intrusions of magmas that have had important environmental consequences, in many cases leading to immense greenhouse gas release and mass extinctions. Magmatic oxygen fugacity (fO2) influences the chemistry of volcanic gases and is an important parameter for examining the links between LIP eruptions and environmental change. To constrain the fO2 of LIP magmas, we report olivine elemental chemistry of 399 crystals from a set of fifteen olivine-rich LIP samples, spanning in age from the Proterozoic (∼1270 Ma) to the Miocene (∼17 Ma). Concentrations of V in olivine are used to show that mafic LIP lavas erupted at +1.20 ± 0.95 ΔFMQ, on average more oxidized than mid ocean ridge basalts (MORB) at −0.28 ± 0.28 ΔFMQ. Mafic LIP magmas show a much larger range than MORB, however. Additionally, fO2 shows a negative correlation with parental magma MgO content, with high MgO lavas approaching the MORB range. This correlation is likely due to sampling of a heterogeneous mixture of oxidized and reduced lithologies, as also sampled by ocean island basalts (OIB). Correlation between fO2 and isotopic ratios such as 143Nd/144Nd demonstrates that the oxidized endmember is geochemically enriched, and may result from subduction recycling of oxidized surficial materials. The high fO2 of primitive LIP magmas demonstrate that they largely emitted oxidized gases during eruption, and furthermore, that LIP magmas associated with mass extinctions have similar magmatic fO2 to those that are not. Global plate tectonic position, magnitude and duration of LIP volcanic eruptions and magmatic degassing, as well as interaction with sedimentary basins in the crust - but not mantle source fO2 - are likely to be the critical factors for whether a LIP was associated with a mass extinction.