In this paper, a converter-based dc microgrid is studied. By considering the impact of each component in dc microgrids on system stability, a multistage configuration is employed, which includes the source stage, interface converter stage between buses, and common load stage. In order to study the overall stability of the above dc microgrid with constant power loads (CPLs), a comprehensive small-signal model is derived by analyzing the interface converters in each stage. The instability issue induced by the CPLs is revealed by using the criteria of impedance matching. Meanwhile, virtual-impedance-based stabilizers are proposed in order to enhance the damping of dc microgrids with CPLs and guarantee the stable operation. Since droop control is commonly used to reach proper load power sharing in dc microgrids, its impact is taken into account when testing the proposed stabilizers. By using the proposed stabilizers, virtual impedances are employed in the output filters of the interface converters in the second stage of the multistage configuration. In particular, one of the virtual impedances is connected in series with the filter capacitor, and the other one is connected at the output path of the converter. It can be seen that by using the proposed stabilizers, the unstable poles induced by the CPLs are forced to move into the stable region. The proposed method is verified by the MATLAB/Simulink model of multistage dc microgrids with three distributed power generation units.