Solid polymer electrolytes (SPEs) for symmetrical supercapacitors are proposed herein with activated carbon as electrodes and optimized solid polymer electrolyte membranes, which serve as the separators and electrolytes. We propose the design of a low-cost solid polymer electrolyte consisting of guanidinium nitrate (GuN) and poly(ethylene oxide) (PEO) with poly(vinylpyrrolidone) (PVP). Using the solution casting approach, blended polymer electrolytes with varying GuN weight percentage ratios of PVP and PEO are prepared. On the blended polymer electrolytes, structural, morphological, vibrational, and ionic conductivity are investigated. The solid polymer electrolytes’ morphology and level of roughness are examined using an FESEM. The interlinking bond formation between the blended polymers and the GuN salt is verified by FTIR measurements, indicating that the ligands are chemically complex. We found that, up to 20 wt.% GuN, the conductivity value increased (1.84 × 10−6 S/cm) with an increase in mobile charge carriers. Notably, the optimized PVP/PEO/20 wt.% solid polymer electrolyte was fabricated into a solid-state symmetrical supercapacitor device, which delivered a potential window of 0 to 2 V, a superior energy density of 3.88 Wh kg−1, and a power density of 1132 W kg−1.