JZ
Jianzhang Zhao
Author with expertise in Aggregation-Induced Emission in Fluorescent Materials
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
28
(11% Open Access)
Cited by:
6,643
h-index:
84
/
i10-index:
342
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Excited state intramolecular proton transfer (ESIPT): from principal photophysics to the development of new chromophores and applications in fluorescent molecular probes and luminescent materials

Jianzhang Zhao et al.Nov 30, 2011
In this perspective we introduce the basic photophysics of the excited-state intramolecular proton transfer (ESIPT) chromophores, then the state-of-the-art development of the ESIPT chromophores and their applications in chemosensors, biological imaging and white-light emitting materials are summarized. Most of the applications of the ESIPT chromophores are based on the photophysics properties, such as design of fluorescent chemosensors by perturbation of the ESIPT process upon interaction with the analytes, their use as biological fluorescent tags to study DNA-protein interaction by probing the variation of the hydration, or design of white-light emitting materials by employing the large Stokes shift of the ESIPT chromophores (to inhibit the Föster energy transfer of the components). The photophysical mechanism of these applications is discussed. Furthermore, a new research topic concerning the ESIPT chromophores is proposed based on our group's results, that is, to develop organic triplet sensitizers with ESIPT chromophores.
0

Exploiting the Reversible Covalent Bonding of Boronic Acids: Recognition, Sensing, and Assembly

Steven Bull et al.Nov 14, 2012
Boronic acids can interact with Lewis bases to generate boronate anions, and they can also bind with diol units to form cyclic boronate esters. Boronic acid based receptor designs originated when Lorand and Edwards used the pH drop observed upon the addition of saccharides to boronic acids to determine their association constants. The inherent acidity of the boronic acid is enhanced when 1,2-, 1,3-, or 1,4-diols react with boronic acids to form cyclic boronic esters (5, 6, or 7 membered rings) in aqueous media, and these interactions form the cornerstone of diol-based receptors used in the construction of sensors and separation systems.In addition, the recognition of saccharides through boronic acid complex (or boronic ester) formation often relies on an interaction between a Lewis acidic boronic acid and a Lewis base (proximal tertiary amine or anion). These properties of boronic acids have led to them being exploited in sensing and separation systems for anions (Lewis bases) and saccharides (diols).The fast and stable bond formation between boronic acids and diols to form boronate esters can serve as the basis for forming reversible molecular assemblies. In spite of the stability of the boronate esters' covalent B–O bonds, their formation is reversible under certain conditions or under the action of certain external stimuli.The reversibility of boronate ester formation and Lewis acid–base interactions has also resulted in the development and use of boronic acids within multicomponent systems. The dynamic covalent functionality of boronic acids with structure-directing potential has led researchers to develop a variety of self-organizing systems including macrocycles, cages, capsules, and polymers.This Account gives an overview of research published about boronic acids over the last 5 years. We hope that this Account will inspire others to continue the work on boronic acids and reversible covalent chemistry.
0

Heavy-Atom-Free Photosensitizers: From Molecular Design to Applications in the Photodynamic Therapy of Cancer

Nguyễn Nghĩa et al.Dec 8, 2020
ConspectusPhotodynamic therapy (PDT) is a clinically approved therapeutic modality that has shown great potential for the treatment of cancers owing to its excellent spatiotemporal selectivity and inherently noninvasive nature. However, PDT has not reached its full potential, partly due to the lack of ideal photosensitizers. A common molecular design strategy for effective photosensitizers is to incorporate heavy atoms into photosensitizer structures, causing concerns about elevated dark toxicity, short triplet-state lifetimes, poor photostability, and the potentially high cost of heavy metals. To address these drawbacks, a significant advance has been devoted to developing advanced smart photosensitizers without the use of heavy atoms to better fit the clinical requirements of PDT. Over the past few years, heavy-atom-free nonporphyrinoid photosensitizers have emerged as an innovative alternative class of PSs due to their superior photophysical and photochemical properties and lower expense. Heavy-atom-free nonporphyrinoid photosensitizers have been widely explored for PDT purposes and have shown great potential for clinical oncologic applications. Although many review articles about heavy-atom-free photosensitizers based on porphyrinoid structure have been published, no specific review articles have yet focused on the heavy-atom-free nonporphyrinoid photosensitizers.In this account, the specific concept related to heavy-atom-free photosensitizers and the advantageous properties of heavy-atom-free photosensitizers for cancer theranostics will be briefly introduced. In addition, recent progress in the development of heavy-atom-free photosensitizers, ranging from molecular design approaches to recent innovative types of heavy-atom-free nonporphyrinoid photosensitizers, emphasizing our own research, will be presented. The main molecular design approaches to efficient heavy-atom-free PSs can be divided into six groups: (1) the approach based on traditional tetrapyrrole structures, (2) spin–orbit charge-transfer intersystem crossing (SOCT-ISC), (3) reducing the singlet–triplet energy gap (ΔEST), (4) the thionation of carbonyl groups of conventional fluorophores, (5) twisted π-conjugation system-induced intersystem crossing, and (6) radical-enhanced intersystem crossing. The innovative types of heavy-atom-free nonporphyrinoid photosensitizers and their applications in cancer diagnostics and therapeutics will be discussed in detail in the third section. Finally, the challenges that need to be addressed to develop optimal heavy-atom-free photosensitizers for oncologic photodynamic therapy and a perspective in this research field will be provided. We believe that this review will provide general guidance for the future design of innovative photosensitizers and spur preclinical and clinical studies for PDT-mediated cancer treatments.
0

Organic Triplet Sensitizer Library Derived from a Single Chromophore (BODIPY) with Long-Lived Triplet Excited State for Triplet–Triplet Annihilation Based Upconversion

Wanhua Wu et al.Jul 25, 2011
Triplet-triplet annihilation (TTA) based upconversions are attractive as a result of their readily tunable excitation/emission wavelength, low excitation power density, and high upconversion quantum yield. For TTA upconversion, triplet sensitizers and acceptors are combined to harvest the irradiation energy and to acquire emission at higher energy through triplet-triplet energy transfer (TTET) and TTA processes. Currently the triplet sensitizers are limited to the phosphorescent transition metal complexes, for which the tuning of UV-vis absorption and T(1) excited state energy level is difficult. Herein for the first time we proposed a library of organic triplet sensitizers based on a single chromophore of boron-dipyrromethene (BODIPY). The organic sensitizers show intense UV-vis absorptions at 510-629 nm (ε up to 180,000 M(-1) cm(-1)). Long-lived triplet excited state (τ(T) up to 66.3 μs) is populated upon excitation of the sensitizers, proved by nanosecond time-resolved transient difference absorption spectra and DFT calculations. With perylene or 1-chloro-9,10-bis(phenylethynyl)anthracene (1CBPEA) as the triplet acceptors, significant upconversion (Φ(UC) up to 6.1%) was observed for solution samples and polymer films, and the anti-Stokes shift was up to 0.56 eV. Our results pave the way for the design of organic triplet sensitizers and their applications in photovoltaics and upconversions, etc.
0

Ultralow-Power Near Infrared Lamp Light Operable Targeted Organic Nanoparticle Photodynamic Therapy

Ling Huang et al.Oct 27, 2016
Tissue penetration depth is a major challenge in practical photodynamic therapy (PDT). A biocompatible and highly effective near infrared (NIR)-light-absorbing carbazole-substituted BODIPY (Car-BDP) molecule is reported as a class of imaging-guidable deep-tissue activatable photosensitizers for PDT. Car-BDP possesses an intense, broad NIR absorption band (600-800 nm) with a remarkably high singlet oxygen quantum yield (ΦΔ = 67%). After being encapsulated with biodegradable PLA-PEG-FA polymers, Car-BDP can form uniform and small organic nanoparticles that are water-soluble and tumor-targetable. Rather than using laser light, such nanoparticles offer an unprecedented deep-tissue, tumor targeting photodynamic therapeutic effect by using an exceptionally low-power-density and cost-effective lamp light (12 mW cm-2). In addition, these nanoparticles can be simultaneously traced in vivo due to their excellent NIR fluorescence. This study signals a major step forward in photodynamic therapy by developing a new class of NIR-absorbing biocompatible organic nanoparticles for effective targeting and treatment of deep-tissue tumors. This work also provides a potential new platform for precise tumor-targeting theranostics and novel opportunities for future affordable clinical cancer treatment.
0

Geometry Relaxation-Induced Large Stokes Shift in Red-Emitting Borondipyrromethenes (BODIPY) and Applications in Fluorescent Thiol Probes

Yinghui Chen et al.Feb 8, 2012
2-Thienyl and 2,6-bisthienyl BODIPY derivatives (BS-SS and BS-DS) were prepared that show intense absorption (ε = 65000 M–1 cm–1 at 507 nm) and a large Stokes shift (96 nm) vs the small Stokes shift of typical BODIPY (<15 nm). Control compounds with a thienyl unit at the 8-position or phenyl substituents at the 2,6-positions were prepared (BS-1 and 9). BS-1 shows absorption/emission in the blue-shifted range and a small Stokes shift (12 nm). Compound 9 shows absorption in the red-shifted range, but the Stokes shift (<30 nm) is much smaller than that for BS-SS and BS-DS. DFT calculations propose the large Stokes shifts of BS-SS and BS-DS are due to the remarkable geometry relaxation upon photoexcitation and its substantial effect on the energy levels of molecular orbitals. For the dyes with small Stokes shifts, much smaller geometry relaxations were found. The fluorophores were used for fluorescent thiol probes, with 2,4-dinitrobenzenesulfonyl (DNBS) as the fluorescence switch. Both fluorescence OFF–ON and unprecedented ON–OFF transduction were observed, which are attributed to the different photoinduced intramolecular electron-transfer (PET) profile. All the photophysics were rationalized by DFT calculations based on the concept of "electronic states" instead of the very often used approximation of "molecular orbitals".
Load More