MS
Meixia Su
Author with expertise in Epidemiology and Management of Sepsis and Septic Shock
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
5
(60% Open Access)
Cited by:
0
h-index:
4
/
i10-index:
3
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Atractylenolide I ameliorates sepsis-induced cardiomyocyte injury by inhibiting macrophage polarization through the modulation of the PARP1/NLRP3 signaling pathway

Dan Wang et al.Jun 9, 2024
Sepsis-induced cardiomyopathy (SIC) leads to high mortality and has no effective treatment strategy. Atractylenolide Ⅰ (AT-I) is a sesquiterpene lactone compound and possesses various biological activities such as anti-inflammatory and organ protection. This study was designed to explore the role and the mechanism of AT-I in SIC. CCK-8 assay was used to assess the viability of AT-I-treated RAW 264.7 cells and immunofluorescence assay was used to detect M1 marker CD86. The expressions of M1 markers Cox2, iNOS and CD11b and PARP1/NLRP3 signaling pathway-related proteins were detected using western blot. The transfection efficiency of oe-PARP1 was examined with RT-qPCR and western blot. The ROS activity in H9c2 cells was detected using DCFH-DA assay and western blot was used to detect the expressions of inflammation- and oxidative stress-related proteins. The apoptosis of H9c2 cells was detected using flow cytometry and western blot. The present study found that AT-I inhibited LPS-induced M1 polarization in RAW 264.7 cells through the downregulation of PARP1/NLRP3 signaling pathway, thereby inhibiting the oxidative stress and apoptosis of H9c2 cells. In conclusion, AT-I might be a promising therapeutic agent for SIC by suppressing macrophage polarization through the modulation of PARP1/NLRP3 signaling pathway.
0

Optimizing Surface State Electrons of Topological Semi‐Metal by Atomic Doping for Enhanced Hydrogen Evolution Reaction

Meixia Su et al.Jun 17, 2024
Abstract Topological materials carrying topological surface states (TSSs) have extraordinary carrier mobility and robustness, which provide a new platform for searching for efficient hydrogen evolution reaction (HER) electrocatalysts. However, the majority of these TSSs originate from the sp band of topological quantum catalysts rather than the d band. Here, based on the density functional theory calculation, it is reported a topological semimetal Pd 3 Sn carrying TSSs mainly derived from d orbital and proposed that optimizing surface state electrons of Pd 3 Sn by introduction heteroatoms (Ni) can promote hybridization between hydrogen atoms and electrons, thereby reducing the Gibbs free energy ( ΔG H ) of adsorbed hydrogen and improving its HER performance. Moreover, this is well verified by electrocatalytic experiment results, the Ni‐doped Pd 3 Sn (Ni 0.1 Pd 2.9 Sn) show much lower overpotential (−29 mV vs RHE) and Tafel slope (17 mV dec −1 ) than Pd 3 Sn (−39 mV vs RHE, 25 mV dec −1 ) at a current density of 10 mA cm −2 . Significantly, the Ni 0.1 Pd 2.9 Sn nanoparticles exhibit excellent stability for HER. The electrocatalytic activity of Ni 0.1 Pd 2.9 Sn nanoparticles is superior to that of commercial Pt. This work provides an accurate guide for manipulating surface state electrons to improve the HER performance of catalysts.
0

N-doped MoS2@indium tin oxide (ITO) core–shell nanowires for high-performance ammonium ion micro-supercapacitor

Yan Ding et al.Aug 5, 2024
Ammonium (NH4+) ion aqueous supercapacitors have gained significant attention due to their notable cost-effectiveness, safety profile, and environmental benefits. Despite this, the optimization of the capacitive performance of electrode materials for NH4+ ion storage remains inadequate. To tackle these challenges, we present a composite electrode depend upon molybdenum disulfide (MoS2) and indium tin oxide nanowires (MoS2@ITO NWs) as the primary host for (NH4+) ions. Additionally, we introduce a straightforward radio frequency nitrogen (N) plasma technique to incorporate nitrogen doping into the MoS2 film, thereby enhancing its performance. The introduction of N plasma doping into two-dimensional MoS2 results in an expansion of the interlayer distance and an improvement in electronic conductivity. This, in turn, facilitates the facile and highly reversible insertion and extraction of NH4+ ions during cycling. Consequently, the N plasma doping significantly enhances the device areal capacitance of MoS2@ITO NWs, increasing it from 78.6 to 161.8 mF cm−2 at 1 mA cm−2, with an exceptional capacity retention (&gt;89.2% after 10 000 cycles) and superior rate capability up to 10 mA cm−2. The integration N of atoms within the straightforward hierarchical core–shell design strategy exhibits promising prospects for bolstering the performance of metal sulfide electrodes and other high-capacity electrode materials aimed at energy storage applications.
0

Revealing the role of Peg13: A promising therapeutic target for mitigating inflammation in sepsis

Dan Wang et al.Jan 1, 2024
To investigate the role of Peg13 in modulating the inflammatory response in sepsis, we established Lipopolysaccharide (LPS)-induced 293T cells and mouse models. Peg13 expression was assessed at various time points after infection using RT-qPCR. The levels of high mobility group box 1 (HMGB1) and interleukin-6 (IL-6) were quantified through ELISA. A total of 44 septic patients and 36 healthy participants were recruited to measure Peg13 and HMGB1 levels in the blood. Peg13 demonstrated significant down-regulation in the supernatant of LPS-induced 293T cells and in the blood of LPS-induced mice. Moreover, the levels of proinflammatory cytokines HMGB1 and IL-6 were elevated in both the supernatant of LPS-induced cell models and blood specimens from LPS-induced murine models, and this elevation could be notably reduced by Peg13 suppression. In a clinical context, Peg13 and HMGB1 levels were higher in septic patients compared to healthy subjects. Peg13 exhibited a negative correlation with HMGB1, C-reactive protein (CRP), and erythrocyte sedimentation rate (ESR) among septic patients. Peg13 mitigates the inflammatory response by reducing the release of proinflammatory cytokines HMGB1 and IL-6 in sepsis, presenting a potential therapeutic target for alleviating inflammation in sepsis treatment.