HD
Hongfang Du
Author with expertise in Aqueous Zinc-Ion Battery Technology
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
4
(0% Open Access)
Cited by:
304
h-index:
23
/
i10-index:
36
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Controllable Design of MoS2 Nanosheets Anchored on Nitrogen‐Doped Graphene: Toward Fast Sodium Storage by Tunable Pseudocapacitance

Xin Xu et al.May 23, 2018
Transition-metal disulfide with its layered structure is regarded as a kind of promising host material for sodium insertion, and intensely investigated for sodium-ion batteries. In this work, a simple solvothermal method to synthesize a series of MoS2 nanosheets@nitrogen-doped graphene composites is developed. This newly designed recipe of raw materials and solvents leads the success of tuning size, number of layers, and interplanar spacing of the as-prepared MoS2 nanosheets. Under cut-off voltage and based on an intercalation mechanism, the ultrasmall MoS2 nanosheets@nitrogen-doped graphene composite exhibits more preferable cycling and rate performance compared to few-/dozens-layered MoS2 nanosheets@nitrogen-doped graphene, as well as many other reported insertion-type anode materials. Last, detailed kinetics analysis and density functional theory calculation are also employed to explain the Na+- storage behavior, thus proving the significance in surface-controlled pseudocapacitance contribution at the high rate. Furthermore, this work offers some meaningful preparation and investigation experiences for designing electrode materials for commercial sodium-ion batteries with favorable performance.
0

Cascade Reaction Enables Heterointerfaces‐Enriched Nanoarrays for Ampere‐Level Hydrogen Production

Hongfang Du et al.Dec 8, 2024
Designing high‐performance electrocatalysts with superior catalytic activity and stability is essential for large‐scale hydrogen production via water electrolysis. Heterostructure nanoarrays are promising candidates, though achieving both high activity and stability simultaneously, especially under high current densities, remains challenging. To this end, we have developed a cascade reaction process that constructs a series of heterostructure nanoarrays with rich heterointerfaces. This process involves treating nickel foam (NF) with molten KSCN and transition metal salts. Initially, NF reacts with KSCN to form Ni9S8 nanoarrays and S2‐ ions, which are subsequently captured by transition metal ions to form sulfides that are directly integrated onto the nanoarrays, resulting in abundant heterointerfaces. Both experimental and theoretical results indicate that these rich heterointerfaces significantly enhance the interfacial interaction between Ni9S8 and RuS2 within the nanoarrays (termed RH‐Ni9S8/RuS2), markedly improving both the intrinsic activity and stability for the hydrogen evolution reaction (HER). Impressively, the RH‐Ni9S8/RuS2 demonstrates exceptional HER performance, achieving a low overpotential of just 180 mV at 1000 mA cm−2 and maintaining stability for up to 500 h under such high‐current‐density conditions. This innovative approach paves the way for the interfacial design and synthesis of high‐performance catalysts for ampere‐level hydrogen production.
0

Cascade Reaction Enables Heterointerfaces‐Enriched Nanoarrays for Ampere‐Level Hydrogen Production

Hongfang Du et al.Dec 8, 2024
Designing high‐performance electrocatalysts with superior catalytic activity and stability is essential for large‐scale hydrogen production via water electrolysis. Heterostructure nanoarrays are promising candidates, though achieving both high activity and stability simultaneously, especially under high current densities, remains challenging. To this end, we have developed a cascade reaction process that constructs a series of heterostructure nanoarrays with rich heterointerfaces. This process involves treating nickel foam (NF) with molten KSCN and transition metal salts. Initially, NF reacts with KSCN to form Ni9S8 nanoarrays and S2‐ ions, which are subsequently captured by transition metal ions to form sulfides that are directly integrated onto the nanoarrays, resulting in abundant heterointerfaces. Both experimental and theoretical results indicate that these rich heterointerfaces significantly enhance the interfacial interaction between Ni9S8 and RuS2 within the nanoarrays (termed RH‐Ni9S8/RuS2), markedly improving both the intrinsic activity and stability for the hydrogen evolution reaction (HER). Impressively, the RH‐Ni9S8/RuS2 demonstrates exceptional HER performance, achieving a low overpotential of just 180 mV at 1000 mA cm−2 and maintaining stability for up to 500 h under such high‐current‐density conditions. This innovative approach paves the way for the interfacial design and synthesis of high‐performance catalysts for ampere‐level hydrogen production.