ZP
Zhigeng Pan
Author with expertise in Augmented Reality and its Applications
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
7
(14% Open Access)
Cited by:
1,048
h-index:
32
/
i10-index:
127
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Scanning 3D Full Human Bodies Using Kinects

Jing Tong et al.Mar 13, 2012
Depth camera such as Microsoft Kinect, is much cheaper than conventional 3D scanning devices, and thus it can be acquired for everyday users easily. However, the depth data captured by Kinect over a certain distance is of extreme low quality. In this paper, we present a novel scanning system for capturing 3D full human body models by using multiple Kinects. To avoid the interference phenomena, we use two Kinects to capture the upper part and lower part of a human body respectively without overlapping region. A third Kinect is used to capture the middle part of the human body from the opposite direction. We propose a practical approach for registering the various body parts of different views under non–rigid deformation. First, a rough mesh template is constructed and used to deform successive frames pairwisely. Second, global alignment is performed to distribute errors in the deformation space, which can solve the loop closure problem efficiently. Misalignment caused by complex occlusion can also be handled reasonably by our global alignment algorithm. The experimental results have shown the efficiency and applicability of our system. Our system obtains impressive results in a few minutes with low price devices, thus is practically useful for generating personalized avatars for everyday users. Our system has been used for 3D human animation and virtual try on, and can further facilitate a range of home–oriented virtual reality (VR) applications.
0

Residual texture-aware infrared and visible image fusion with feature selection attention and adaptive loss

Zhigeng Pan et al.Jun 1, 2024
Infrared and visible image fusion plays a critical role in combining complementary information gathered from both types of images, thus enhancing the visual quality and the perception in the resulting fused image. Thus, this paper introduces RTAAFusion which is, an innovative image fusion framework that incorporates unique components. This proposed technique employs a Residual Texture-Aware Attention Block Module (RTAABM), meticulously engineered to effectively capture image disparities and texture information. Furthermore, it includes a feature selection attention mechanism that accurately identifies the importance and the weights of the different image features, thereby facilitating a precise and efficient fusion process. The framework also features an Adaptive Decision Block Loss (ADBL), which allows the fusion model to be adjusted to the distinctive characteristics and requirements of various image regions, thus leading to more accurate and targeted fusion results. Comprehensive experiments and comparisons with leading-edge approaches reflected the superior performance of RTAAFusion in terms of visual perception, information conservation, and spatial details across challenging scenarios and a broad range of image features. Therefore, RTAAFusion delivers a fast execution speed and is versatile across different scenarios and image features. This proposed framework shows immense potential for diverse applications within the field of infrared and visible image fusion.
0
Citation1
0
Save