TC
Todd Claybaugh
Author with expertise in Astronomical Instrumentation and Spectroscopy
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
9
(78% Open Access)
Cited by:
1
h-index:
7
/
i10-index:
4
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

DESI complete calibration of the colour–redshift relation (DC3R2): results from early DESI data

J. Mccullough et al.May 29, 2024
ABSTRACT We present initial results from the Dark Energy Spectroscopic Instrument (DESI) complete calibration of the colour–redshift relation (DC3R2) secondary target survey. Our analysis uses 230 k galaxies that overlap with KiDS-VIKING ugriZYJHKs photometry to calibrate the colour–redshift relation and to inform photometric redshift (photo-z) inference methods of future weak lensing surveys. Together with emission line galaxies (ELGs), luminous red galaxies (LRGs), and the Bright Galaxy Survey (BGS) that provide samples of complementary colour, the DC3R2 targets help DESI to span 56 per cent of the colour space visible to Euclid and LSST with high confidence spectroscopic redshifts. The effects of spectroscopic completeness and quality are explored, as well as systematic uncertainties introduced with the use of common Self-Organizing Maps trained on different photometry than the analysis sample. We further examine the dependence of redshift on magnitude at fixed colour, important for the use of bright galaxy spectra to calibrate redshifts in a fainter photometric galaxy sample. We find that noise in the KiDS-VIKING photometry introduces a dominant, apparent magnitude dependence of redshift at fixed colour, which indicates a need for carefully chosen deep drilling fields, and survey simulation to model this effect for future weak lensing surveys.
0

The clustering of Lyman Alpha Emitting galaxies at z=2–3

Martin White et al.Aug 1, 2024
Abstract We measure the clustering of Lyman Alpha Emitting galaxies (LAEs) selected from the One-hundred-square-degree DECam Imaging in Narrowbands (ODIN) survey, with spectroscopic follow-up from Dark Energy Spectroscopic Instrument (DESI). We use DESI spectroscopy to optimize our selection and to constrain the interloper fraction and redshift distribution of our narrow-band selected sources. We select samples of 4000 LAEs at z = 2.45 and 3.1 in 9 sq.deg. centered on the COSMOS field with median Lyα fluxes of ≈ 10 -16 erg s -1 cm -2 . Covariances and cosmological inferences are obtained from a series of mock catalogs built upon high-resolution N-body simulations that match the footprint, number density, redshift distribution and observed clustering of the sample. We find that both samples have a correlation length of r 0 = 3.0 ± 0.2 h -1 Mpc. Within our fiducial cosmology these correspond to 3D number densities of ≈ 10 -3 h 3 Mpc -3 and, from our mock catalogs, biases of 1.7 and 2.0 at z = 2.45 and 3.1, respectively. We discuss the implications of these measurements for the use of LAEs as large-scale structure tracers for high-redshift cosmology.
0

AuriDESI: mock catalogues for the DESI Milky Way Survey

Namitha Kizhuprakkat et al.Jun 7, 2024
The Dark Energy Spectroscopic Instrument Milky Way Survey (DESI MWS) will explore the assembly history of the Milky Way by characterising remnants of ancient dwarf galaxy accretion events and improving constraints on the distribution of dark matter in the outer halo. We present mock catalogues that reproduce the selection criteria of MWS and the format of the final MWS data set. These catalogues can be used to test methods for quantifying the properties of stellar halo substructure and reconstructing the Milky Way's accretion history with the MWS data, including the effects of halo-to-halo variance. The mock catalogues are based on a phase-space kernel expansion technique applied to star particles in the Auriga suite of six high-resolution $\Lambda$CDM magneto-hydrodynamic zoom-in simulations. They include photometric properties (and associated errors) used in DESI target selection and the outputs of the MWS spectral analysis pipeline (radial velocity, metallicity, surface gravity, and temperature). They also include information from the underlying simulation, such as the total gravitational potential and information on the progenitors of accreted halo stars. We discuss how the subset of halo stars observable by MWS in these simulations corresponds to their true content and properties. These mock Milky Ways have rich accretion histories, resulting in a large number of substructures that span the whole stellar halo out to large distances and have substantial overlap in the space of orbital energy and angular momentum.
0

Broad absorption line quasars in the Dark Energy Spectroscopic Instrument Early Data Release

S. Filbert et al.Jul 4, 2024
ABSTRACT Broad absorption line (BAL) quasars are characterized by gas clouds that absorb flux at the wavelength of common quasar spectral features, although blueshifted by velocities that can exceed $0.1c$. BAL features are interesting as signatures of significant feedback, yet they can also compromise cosmological studies with quasars by distorting the shape of the most prominent quasar emission lines, impacting redshift accuracy and measurements of the matter density distribution traced by the Lyman $\alpha$ forest. We present a catalogue of BAL quasars discovered in the Dark Energy Spectroscopic Instrument (DESI) survey Early Data Release, which were observed as part of DESI Survey Validation, as well as the first two months of the main survey. We describe our method to automatically identify BAL quasars in DESI data, the quantities we measure for each BAL, and investigate the completeness and purity of this method with mock DESI observations. We mask the wavelengths of the BAL features and re-evaluate each BAL quasar redshift, finding new redshifts which are $243\, {\rm km}\, {\rm s}^{-1}$ smaller on average for the BAL quasar sample. These new, more accurate redshifts are important to obtain the best measurements of quasar clustering, especially at small scales. Finally, we present some spectra of rarer classes of BALs that illustrate the potential of DESI data to identify such populations for further study.
0

DESI Early Data Release Milky Way Survey Value-Added Catalogue

S. Koposov et al.Jul 30, 2024
ABSTRACT We present the stellar value-added catalogue based on the Dark Energy Spectroscopic Instrument (DESI) Early Data Release. The catalogue contains radial velocity and stellar parameter measurements for $\simeq$ 400 000 unique stars observed during commissioning and survey validation by DESI. These observations were made under conditions similar to the Milky Way Survey (MWS) currently carried out by DESI but also include multiple specially targeted fields, such as those containing well-studied dwarf galaxies and stellar streams. The majority of observed stars have $16\lt r\lt 20$ with a median signal-to-noise ratio in the spectra of $\sim$ 20. In the paper, we describe the structure of the catalogue, give an overview of different target classes observed, as well as provide recipes for selecting clean stellar samples. We validate the catalogue using external high-resolution measurements and show that radial velocities, surface gravities, and iron abundances determined by DESI are accurate to 1 km s−1, 0.3 dex, and $\sim$ 0.15 dex respectively. We also demonstrate possible uses of the catalogue for chemo-dynamical studies of the Milky Way stellar halo and Draco dwarf spheroidal. The value-added catalogue described in this paper is the very first DESI MWS catalogue. The next DESI data release, expected in less than a year, will add the data from the first year of DESI survey operations and will contain approximately 4 million stars, along with significant processing improvements.
0

Measuring the Conditional Luminosity and Stellar Mass Functions of Galaxies by Combining the Dark Energy Spectroscopic Instrument Legacy Imaging Surveys Data Release 9, Survey Validation 3, and Year 1 Data

Yirong Wang et al.Aug 1, 2024
Abstract In this investigation, we leverage the combination of the Dark Energy Spectroscopic Instrument (DESI) Legacy Imaging Surveys Data Release 9, Survey Validation 3, and Year 1 data sets to estimate the conditional luminosity functions and conditional stellar mass functions (CLFs and CSMFs) of galaxies across various halo mass bins and redshift ranges. To support our analysis, we utilize a realistic DESI mock galaxy redshift survey (MGRS) generated from a high-resolution Jiutian simulation. An extended halo-based group finder is applied to both MGRS catalogs and DESI observation. By comparing the r - and z -band luminosity functions (LFs) and stellar mass functions (SMFs) derived using both photometric and spectroscopic data, we quantified the impact of photometric redshift (photo- z ) errors on the galaxy LFs and SMFs, especially in the low-redshift bin at the low-luminosity/mass end. By conducting prior evaluations of the group finder using MGRS, we successfully obtain a set of CLF and CSMF measurements from observational data. We find that at low redshift, the faint-end slopes of CLFs and CSMFs below ∼10 9 h −2 L ⊙ (or h −2 M ⊙ ) evince a compelling concordance with the subhalo mass functions. After correcting the cosmic variance effect of our local Universe following Chen et al., the faint-end slopes of the LFs/SMFs turn out to also be in good agreement with the slope of the halo mass function.
0

Archetype-based Redshift Estimation for the Dark Energy Spectroscopic Instrument Survey

Abhijeet Anand et al.Aug 21, 2024
We present a computationally efficient galaxy archetype-based redshift estimation and spectral classification method for the Dark Energy Survey Instrument (DESI) survey. The DESI survey currently relies on a redshift fitter and spectral classifier using a linear combination of PCA-derived templates, which is very efficient in processing large volumes of DESI spectra within a short time frame. However, this method occasionally yields unphysical model fits for galaxies and fails to adequately absorb calibration errors that may still be occasionally visible in the reduced spectra. Our proposed approach improves upon this existing method by refitting the spectra with carefully generated physical galaxy archetypes combined with additional terms designed to absorb data reduction defects and provide more physical models to the DESI spectra. We test our method on an extensive dataset derived from the survey validation (SV) and Year 1 (Y1) data of DESI. Our findings indicate that the new method delivers marginally better redshift success for SV tiles while reducing catastrophic redshift failure by $10-30\%$. At the same time, results from millions of targets from the main survey show that our model has relatively higher redshift success and purity rates ($0.5-0.8\%$ higher) for galaxy targets while having similar success for QSOs. These improvements also demonstrate that the main DESI redshift pipeline is generally robust. Additionally, it reduces the false positive redshift estimation by $5-40\%$ for sky fibers. We also discuss the generic nature of our method and how it can be extended to other large spectroscopic surveys, along with possible future improvements.