RR
Roy Rich
Author with expertise in Global Forest Drought Response and Climate Change
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
8
(50% Open Access)
Cited by:
755
h-index:
20
/
i10-index:
27
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Short-Term Groundwater Level Fluctuations Drive Subsurface Redox Variability

Fausto Machado‐Silva et al.Aug 8, 2024
As global change processes modify the extent and functions of terrestrial–aquatic interfaces, the variability of critical and dynamic transitional zones between wetlands and uplands increases. However, it is still unclear how fluctuating water levels at these dynamic boundaries alter groundwater biogeochemical cycling. Here, we used high-temporal resolution data along gradients from wetlands to uplands and during fluctuating water levels at freshwater coastal areas to capture spatiotemporal patterns of groundwater redox potential (Eh). We observed that topography influences groundwater Eh that is higher in uplands than in wetlands; however, the high variability within TAI zones challenged the establishment of distinct redox zonation. Declining water levels generally decreased Eh, but most locations exhibited significant Eh variability, which is associated with rare instances of short-term water level fluctuations, introducing oxygen. The Eh-oxygen relationship showed distinct hysteresis patterns, reflecting redox poising capacity at higher Eh, maintaining more oxidizing states longer than the dissolved oxygen presence. Surprisingly, we observed more frequent oxidizing states in transitional areas and wetlands than in uplands. We infer that occasional oxygen entering specific wetland–upland boundaries acts as critical biogeochemical control points. High-resolution data can capture such rare yet significant biogeochemical instances, supporting redox-informed models and advancing the predictability of climate change feedback.
0
0
Save
0

Integrated Effects of Site Hydrology and Vegetation on Exchange Fluxes and Nutrient Cycling at a Coastal Terrestrial‐Aquatic Interface

Bing Li et al.Jun 1, 2024
Abstract The complex interactions among soil, vegetation, and site hydrologic conditions driven by precipitation and tidal cycles control the biogeochemical transformations and bi‐directional exchange of carbon and nutrients across the terrestrial–aquatic interfaces (TAIs) in coastal regions. This study uses a highly mechanistic model, Advanced Terrestrial Simulator (ATS)‐PFLOTRAN, to explore how these interactions affect exchanges of materials and carbon and nitrogen cycling. We used a transect in the Chesapeake Bay region that spans zones of open water, coastal wetland, transition, and upland forest. We designed several simulation scenarios to parse the effects of the individual controlling factors and the sensitivity of carbon cycling to reaction rate parameters derived from laboratory experiments. Our simulations reveal an active zone for carbon cycling under the transition zones between the wetland and the upland. Evapotranspiration is found to enhance the exchange fluxes between the surface and subsurface domains, resulting in a higher dissolved oxygen concentration in the TAIs. The transport of organic carbon derived from plant leaves and roots provide an additional source of organic carbon needed for the aerobic respiration and denitrification processes in the TAIs. The variability in reaction rate parameters associated with microbial activities is also found to play a dominant role in controlling the heterogeneity and dynamics of the simulated redox conditions. This modeling‐focused exploratory study enabled us to better understand the complex interactions among soil, water and microbes that govern the hydro‐biogeochemical processes at the TAIs, which is an important step toward representing coastal ecosystems in larger‐scale Earth system models.
0
0
Save