BW
Brian Wardlow
Author with expertise in Remote Sensing in Vegetation Monitoring and Phenology
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
14
(71% Open Access)
Cited by:
5,701
h-index:
45
/
i10-index:
71
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Analysis of time-series MODIS 250 m vegetation index data for crop classification in the U.S. Central Great Plains

Brian Wardlow et al.Jan 19, 2007
The global environmental change research community requires improved and up-to-date land use/land cover (LULC) datasets at regional to global scales to support a variety of science and policy applications. Considerable strides have been made to improve large-area LULC datasets, but little emphasis has been placed on thematically detailed crop mapping, despite the considerable influence of management activities in the cropland sector on various environmental processes and the economy. Time-series MODIS 250 m Vegetation Index (VI) datasets hold considerable promise for large-area crop mapping in an agriculturally intensive region such as the U.S. Central Great Plains, given their global coverage, intermediate spatial resolution, high temporal resolution (16-day composite period), and cost-free status. However, the specific spectral–temporal information contained in these data has yet to be thoroughly explored and their applicability for large-area crop-related LULC classification is relatively unknown. The objective of this research was to investigate the general applicability of the time-series MODIS 250 m Enhanced Vegetation Index (EVI) and Normalized Difference Vegetation Index (NDVI) datasets for crop-related LULC classification in this region. A combination of graphical and statistical analyses were performed on a 12-month time-series of MODIS EVI and NDVI data from more than 2000 cropped field sites across the U.S. state of Kansas. Both MODIS VI datasets were found to have sufficient spatial, spectral, and temporal resolutions to detect unique multi-temporal signatures for each of the region's major crop types (alfalfa, corn, sorghum, soybeans, and winter wheat) and management practices (double crop, fallow, and irrigation). Each crop's multi-temporal VI signature was consistent with its general phenological characteristics and most crop classes were spectrally separable at some point during the growing season. Regional intra-class VI signature variations were found for some crops across Kansas that reflected the state's climate and planting time differences. The multi-temporal EVI and NDVI data tracked similar seasonal responses for all crops and were highly correlated across the growing season. However, differences between EVI and NDVI responses were most pronounced during the senescence phase of the growing season.
0
Paper
Citation814
0
Save
0

Remote sensing of drought: Progress, challenges and opportunities

Amir AghaKouchak et al.May 25, 2015
Abstract This review surveys current and emerging drought monitoring approaches using satellite remote sensing observations from climatological and ecosystem perspectives. We argue that satellite observations not currently used for operational drought monitoring, such as near‐surface air relative humidity data from the Atmospheric Infrared Sounder mission, provide opportunities to improve early drought warning. Current and future satellite missions offer opportunities to develop composite and multi‐indicator drought models. While there are immense opportunities, there are major challenges including data continuity, unquantified uncertainty, sensor changes, and community acceptability. One of the major limitations of many of the currently available satellite observations is their short length of record. A number of relevant satellite missions and sensors (e.g., the Gravity Recovery and Climate Experiment) provide only a decade of data, which may not be sufficient to study droughts from a climate perspective. However, they still provide valuable information about relevant hydrologic and ecological processes linked to this natural hazard. Therefore, there is a need for models and algorithms that combine multiple data sets and/or assimilate satellite observations into model simulations to generate long‐term climate data records. Finally, the study identifies a major gap in indicators for describing drought impacts on the carbon and nitrogen cycle, which are fundamental to assessing drought impacts on ecosystems.
0
Paper
Citation728
0
Save
0

Large-area crop mapping using time-series MODIS 250 m NDVI data: An assessment for the U.S. Central Great Plains

Brian Wardlow et al.Oct 2, 2007
Improved and up-to-date land use/land cover (LULC) data sets that classify specific crop types and associated land use practices are needed over intensively cropped regions such as the U.S. Central Great Plains, to support science and policy applications focused on understanding the role and response of the agricultural sector to environmental change issues. The Moderate Resolution Imaging Spectroradiometer (MODIS) holds considerable promise for detailed, large-area crop-related LULC mapping in this region given its global coverage, unique combination of spatial, spectral, and temporal resolutions, and the cost-free status of its data. The objective of this research was to evaluate the applicability of time-series MODIS 250 m normalized difference vegetation index (NDVI) data for large-area crop-related LULC mapping over the U.S. Central Great Plains. A hierarchical crop mapping protocol, which applied a decision tree classifier to multi-temporal NDVI data collected over the growing season, was tested for the state of Kansas. The hierarchical classification approach produced a series of four crop-related LULC maps that progressively classified: 1) crop/non-crop, 2) general crop types (alfalfa, summer crops, winter wheat, and fallow), 3) specific summer crop types (corn, sorghum, and soybeans), and 4) irrigated/non-irrigated crops. A series of quantitative and qualitative assessments were made at the state and sub-state levels to evaluate the overall map quality and highlight areas of misclassification for each map. The series of MODIS NDVI-derived crop maps generally had classification accuracies greater than 80%. Overall accuracies ranged from 94% for the general crop map to 84% for the summer crop map. The state-level crop patterns classified in the maps were consistent with the general cropping patterns across Kansas. The classified crop areas were usually within 1–5% of the USDA reported crop area for most classes. Sub-state comparisons found the areal discrepancies for most classes to be relatively minor throughout the state. In eastern Kansas, some small cropland areas could not be resolved at MODIS' 250 m resolution and led to an underclassification of cropland in the crop/non-crop map, which was propagated to the subsequent crop classifications. Notable regional areal differences in crop area were also found for a few selected crop classes and locations that were related to climate factors (i.e., omission of marginal, dryland cropped areas and the underclassification of irrigated crops in western Kansas), localized precipitation patterns (overclassification of irrigated crops in northeast Kansas), and specific cropping practices (double cropping in southeast Kansas).
0
Paper
Citation701
0
Save
0

Evaluation of Drought Indices Based on Thermal Remote Sensing of Evapotranspiration over the Continental United States

Martha Anderson et al.Nov 5, 2010
Abstract The reliability of standard meteorological drought indices based on measurements of precipitation is limited by the spatial distribution and quality of currently available rainfall data. Furthermore, they reflect only one component of the surface hydrologic cycle, and they cannot readily capture nonprecipitation-based moisture inputs to the land surface system (e.g., irrigation) that may temper drought impacts or variable rates of water consumption across a landscape. This study assesses the value of a new drought index based on remote sensing of evapotranspiration (ET). The evaporative stress index (ESI) quantifies anomalies in the ratio of actual to potential ET (PET), mapped using thermal band imagery from geostationary satellites. The study investigates the behavior and response time scales of the ESI through a retrospective comparison with the standardized precipitation indices and Palmer drought index suite, and with drought classifications recorded in the U.S. Drought Monitor for the 2000–09 growing seasons. Spatial and temporal correlation analyses suggest that the ESI performs similarly to short-term (up to 6 months) precipitation-based indices but can be produced at higher spatial resolution and without requiring any precipitation data. Unique behavior is observed in the ESI in regions where the evaporative flux is enhanced by moisture sources decoupled from local rainfall: for example, in areas of intense irrigation or shallow water table. Normalization by PET serves to isolate the ET signal component responding to soil moisture variability from variations due to the radiation load. This study suggests that the ESI is a useful complement to the current suite of drought indicators, with particular added value in parts of the world where rainfall data are sparse or unreliable.
0
Paper
Citation444
0
Save
0

A high-performance and in-season classification system of field-level crop types using time-series Landsat data and a machine learning approach

Yaping Cai et al.Mar 18, 2018
Accurate and timely spatial classification of crop types based on remote sensing data is important for both scientific and practical purposes. Spatially explicit crop-type information can be used to estimate crop areas for a variety of monitoring and decision-making applications such as crop insurance, land rental, supply-chain logistics, and financial market forecasting. However, there is no publically available spatially explicit in-season crop-type classification information for the U.S. Corn Belt (a landscape predominated by corn and soybean). Instead, researchers and decision-makers have to wait until four to six months after harvest to have such information from the previous year. The state-of-the-art research on crop-type classification has been shifted from relying on only spectral features of single static images to combining together spectral and time-series information. While Landsat data have a desirable spatial resolution for field-level crop-type classification, the ability to extract temporal phenology information based on Landsat data remains a challenge due to low temporal revisiting frequency and inevitable cloud contamination. To address this challenge and generate accurate, cost-effective, and in-season crop-type classification, this research uses the USDA's Common Land Units (CLUs) to aggregate spectral information for each field based on a time-series Landsat image data stack to largely overcome the cloud contamination issue while exploiting a machine learning model based on Deep Neural Network (DNN) and high-performance computing for intelligent and scalable computation of classification processes. Experiments were designed to evaluate what information is most useful for training the machine learning model for crop-type classification, and how various spatial and temporal factors affect the crop-type classification performance in order to derive timely crop type information. All experiments were conducted over Champaign County located in central Illinois, and a total of 1322 Landsat multi-temporal scenes including all the six optical spectral bands spanning from 2000 to 2015 were used. Computational experiments show the inclusion of temporal phenology information and evenly distributed spatial training samples in the study domain improves classification performance. The shortwave infrared bands show notably better performance than the widely used visible and near-infrared bands for classifying corn and soybean. In comparison with USDA's Crop Data Layer (CDL), this study found a relatively high Overall Accuracy (i.e. the number of the corrected classified fields divided by the number of the total fields) of 96% for classifying corn and soybean across all CLU fields in the Champaign County from 2000 to 2015. Furthermore, our approach achieved 95% Overall Accuracy by late July of the concurrent year for classifying corn and soybean. The findings suggest the methodology presented in this paper is promising for accurate, cost-effective, and in-season classification of field-level crop types, which may be scaled up to large geographic extents such as the U.S. Corn Belt.
0
Paper
Citation416
0
Save
Load More