JX
Jiayi Xu
Author with expertise in Radiomics in Medical Imaging Analysis
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(50% Open Access)
Cited by:
0
h-index:
5
/
i10-index:
3
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Radiomics‐guided generative adversarial network for automatic primary target volume segmentation for nasopharyngeal carcinoma using computed tomography images

Juebin Jin et al.Nov 13, 2024
Abstract Background Automatic primary gross tumor volume (GTVp) segmentation for nasopharyngeal carcinoma (NPC) is a quite challenging task because of the existence of similar visual characteristics between tumors and their surroundings, especially on computed tomography (CT) images with severe low contrast resolution. Therefore, most recently proposed methods based on radiomics or deep learning (DL) is difficult to achieve good results on CT datasets. Purpose A peritumoral radiomics‐guided generative adversarial network (PRG‐GAN) was proposed to address this challenge. Methods A total of 157 NPC patients with CT images was collected and divided into training, validation, and testing cohorts of 108, 9, and 30 patients, respectively. The proposed model was based on a standard GAN consisting of a generator network and a discriminator network. Morphological dilation on the initial segmentation results from GAN was first conducted to delineate annular peritumoral region, in which radiomics features were extracted as priori guide knowledge. Then, radiomics features were fused with semantic features by the discriminator's fully connected layer to achieve the voxel‐level classification and segmentation. The dice similarity coefficient (DSC), 95% Hausdorff distance (HD95), and average symmetric surface distance (ASSD) were used to evaluate the segmentation performance using a paired samples t ‐test with Bonferroni correction and Cohen's d ( d ) effect sizes. A two‐sided p ‐value of less than 0.05 was considered statistically significant. Results The model‐generated predictions had a high overlap ratio with the ground truth. The average DSC, HD95, and ASSD were significantly improved from 0.80 ± 0.12, 4.65 ± 4.71 mm, and 1.35 ± 1.15 mm of GAN to 0.85 ± 0.18 ( p = 0.001, d = 0.71), 4.15 ± 7.56 mm ( p = 0.002, d = 0.67), and 1.11 ± 1.65 mm ( p < 0.001, d = 0.46) of PRG‐GAN, respectively. Conclusion Integrating radiomics features into GAN is promising to solve unclear border limitations and increase the delineation accuracy of GTVp for patients with NPC.
0

Radiomics Harmonization in Ultrasound Images for Cervical Cancer Lymph Node Metastasis Prediction Using Cycle-GAN

Zeshuo Zhao et al.Jan 1, 2024
Background: Ultrasound (US) based radiomics is susceptible to variations in scanners, sonographers. Objective: To retrospectively investigate the feasibility of an adapted cycle generative adversarial networks (CycleGAN) in the style transfer to improve US based radiomics in the prediction of lymph node metastasis (LNM) with images from multiple scanners for patients with early cervical cancer (ECC). Methods: The CycleGAN was firstly trained to transfer paired US phantom images from one US device to another one; the model was then further trained and tested with clinical US images of ECC by transferring images from four US devices to one specific device; finally, the adapted model was tested with its effects on the radiomics feature harmonization and accuracy of LNM prediction in US based radiomics for ECC patients. Results: Phantom study demonstrated an increased radiomics harmonization using CycleGAN with an average Pearson correlation coefficient of 0.60 and 0.81 for radiomics features extracted from original and generated images in correlation with the target phantom images, respectively. Additionally, the image quality metric Peak Signal-to-Noise Ratio (PSNR) was increased from 11.18 for the original images to 15.45 for the generated image. Clinical US images of 169 ECC patients were enrolled for style transfer model training and validation. The area under curve (AUC) of LNM prediction radiomics models with features extracted from generated images of different style transfer models ranged from 0.73 to 0.85. The AUC was improved from 0.78 with features extracted from original images to 0.85 with style transferred images. Conclusions: The adapted CycleGAN network is able to increase the radiomics feature harmonization for images from different ultrasound equipment based on image domain and improve the LNM prediction accuracy for ECC.