PS
Pravat Shit
Author with expertise in Soil Erosion and Agricultural Sustainability
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(67% Open Access)
Cited by:
281
h-index:
32
/
i10-index:
71
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Comparison of GIS-based interpolation methods for spatial distribution of soil organic carbon (SOC)

Gouri Bhunia et al.Feb 19, 2016
The ecological, economical, and agricultural benefits of accurate interpolation of spatial distribution patterns of soil organic carbon (SOC) are well recognized. In the present study, different interpolation techniques in a geographical information system (GIS) environment are analyzed and compared for estimating the spatial variation of SOC at three different soil depths (0–20 cm, 20–40 cm and 40–100 cm) in Medinipur Block, West Bengal, India. Stratified random samples of total 98 soils were collected from different landuse sites including agriculture, scrubland, forest, grassland, and fallow land of the study area. A portable global positioning system (GPS) was used to collect coordinates of each sample site. Five interpolation methods such as inverse distance weighting (IDW), local polynomial interpolation (LPI), radial basis function (RBF), ordinary kriging (OK) and Empirical Bayes kriging (EBK) are used to generate spatial distribution of SOC. SOC is concentrated in forest land and less SOC is observed in bare land. The cross validation is applied to evaluate the accuracy of interpolation methods through coefficient of determination (R2) and root mean square error (RMSE). The results indicate that OK is superior method with the least RMSE and highest R2 value for interpolation of SOC spatial distribution.
0

Utilizing Machine Learning Algorithms for the Development of Gully Erosion Susceptibility Maps: Evidence from the Chotanagpur Plateau Region, India

Md Hasanuzzaman et al.Jul 31, 2024
Gully erosion is a serious environmental threat, compromising soil health, damaging agricultural lands, and destroying vital infrastructure. Pinpointing regions prone to gully erosion demands careful selection of an appropriate machine learning algorithm. This choice is crucial, as the complex interplay of various environmental factors contributing to gully formation requires a nuanced analytical approach. To develop the most accurate Gully Erosion Susceptibility Map (GESM) for India’s Raiboni River basin, researchers harnessed the power of two cutting-edge machine learning algorithm: Extreme Gradient Boosting (XGBoost) and Random Forest (RF). For a comprehensive analysis, this study integrated 24 potential control factors. We meticulously investigated a dataset of 200 samples, ensuring an even balance between non-gullied and gullied locations. To assess multicollinearity among the 24 variables, we employed two techniques: the Information Gain Ratio (IGR) test and Variance Inflation Factors (VIF). Elevation, land use, river proximity, and rainfall most influenced the basin’s GESM. Rigorous tests validated XGBoost and RF model performance. XGBoost surpassed RF (ROC 86% vs. 83.1%). Quantile classification yielded a GESM with five levels: very high to very low. Our findings reveal that roughly 12% of the basin area is severely affected by gully erosion. These findings underscore the critical need for targeted interventions in these highly susceptible areas. Furthermore, our analysis of gully characteristics unveiled a predominance of V-shaped gullies, likely in an active developmental stage, supported by an average Shape Index (SI) value of 0.26 and a mean Erosivness Index (EI) of 0.33. This research demonstrates the potential of machine learning to pinpoint areas susceptible to gully erosion. By providing these valuable insights, policymakers can make informed decisions regarding sustainable land management practices.
0

Assessment of gully erosion susceptibility using four data-driven models AHP, FR, RF and XGBoosting machine learning algorithms

Md Hasanuzzaman et al.May 1, 2024
Gully erosion is a significant global threat to socioeconomic and environmental sustainability, making it a widespread natural hazard. Developing spatial models for gully erosion is crucial for local governance to effectively implement mitigation measures and promote regional development. This study applied two machine learning (ML) models, RF and XGB, alongside an AHP-based multi-criteria decision method and FR bivariate statistics, to assess gully erosion susceptibility (GES) in the Kangsabati River basin in eastern India's Chotonagpur plateau fringe. A GIS database was created, incorporating recorded gully erosion incidents and 20 conditioning variables, which were evaluated for multicollinearity. These variables served as predictive factors for assessing gully erosion presence in the study area. The models' performance was evaluated using metrics such as RMSE, MAE, specificity, sensitivity, and accuracy. The XGB model outperformed the others, achieving a predictive accuracy of 90.22%. The study found that approximately 6.56% of the Kangsabati catchment is highly susceptible to gully erosion, with 12.39% moderately susceptible and 81.05% not susceptible. The XGB model had the highest ROC value of 85.5 during testing, indicating its superiority over the FR (ROC = 81.7), AHP (ROC = 79.8), and RF (ROC = 83.8) models. These findings highlight the XGB model's efficacy and potential for large-scale GES mapping.