YL
Yonghua Li‐Beisson
Author with expertise in Microalgae as a Source for Biofuels Production
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
30
(77% Open Access)
Cited by:
3,958
h-index:
49
/
i10-index:
102
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Acyl-Lipid Metabolism

Yonghua Li‐Beisson et al.Jan 1, 2013
Acyl lipids in Arabidopsis and all other plants have a myriad of diverse functions. These include providing the core diffusion barrier of the membranes that separates cells and subcellular organelles. This function alone involves more than 10 membrane lipid classes, including the phospholipids, galactolipids, and sphingolipids, and within each class the variations in acyl chain composition expand the number of structures to several hundred possible molecular species. Acyl lipids in the form of triacylglycerol account for 35% of the weight of Arabidopsis seeds and represent their major form of carbon and energy storage. A layer of cutin and cuticular waxes that restricts the loss of water and provides protection from invasions by pathogens and other stresses covers the entire aerial surface of Arabidopsis. Similar functions are provided by suberin and its associated waxes that are localized in roots, seed coats, and abscission zones and are produced in response to wounding. This chapter focuses on the metabolic pathways that are associated with the biosynthesis and degradation of the acyl lipids mentioned above. These pathways, enzymes, and genes are also presented in detail in an associated website (ARALIP: http://aralip.plantbiology.msu.edu/). Protocols and methods used for analysis of Arabidopsis lipids are provided. Finally, a detailed summary of the composition of Arabidopsis lipids is provided in three figures and 15 tables.
0

Oil accumulation in the model green alga Chlamydomonas reinhardtii: characterization, variability between common laboratory strains and relationship with starch reserves

Magali Siaut et al.Jan 21, 2011
When cultivated under stress conditions, many microalgae species accumulate both starch and oil (triacylglycerols). The model green microalga Chlamydomonas reinhardtii has recently emerged as a model to test genetic engineering or cultivation strategies aiming at increasing lipid yields for biodiesel production. Blocking starch synthesis has been suggested as a way to boost oil accumulation. Here, we characterize the triacylglycerol (TAG) accumulation process in Chlamydomonas and quantify TAGs in various wild-type and starchless strains.In response to nitrogen deficiency, Chlamydomonas reinhardtii produced TAGs enriched in palmitic, oleic and linoleic acids that accumulated in oil-bodies. Oil synthesis was maximal between 2 and 3 days following nitrogen depletion and reached a plateau around day 5. In the first 48 hours of oil deposition, a ~80% reduction in the major plastidial membrane lipids occurred. Upon nitrogen re-supply, mobilization of TAGs started after starch degradation but was completed within 24 hours. Comparison of oil content in five common laboratory strains (CC124, CC125, cw15, CC1690 and 11-32A) revealed a high variability, from 2 μg TAG per million cell in CC124 to 11 μg in 11-32A. Quantification of TAGs on a cell basis in three mutants affected in starch synthesis (cw15sta1-2, cw15sta6 and cw15sta7-1) showed that blocking starch synthesis did not result in TAG over-accumulation compared to their direct progenitor, the arginine auxotroph strain 330. Moreover, no significant correlation was found between cellular oil and starch levels among the twenty wild-type, mutants and complemented strains tested. By contrast, cellular oil content was found to increase steeply with salt concentration in the growth medium. At 100 mM NaCl, oil level similar to nitrogen depletion conditions could be reached in CC124 strain.A reference basis for future genetic studies of oil metabolism in Chlamydomonas is provided. Results highlight the importance of using direct progenitors as control strains when assessing the effect of mutations on oil content. They also suggest the existence in Chlamydomonas of complex interplays between oil synthesis, genetic background and stress conditions. Optimization of such interactions is an alternative to targeted metabolic engineering strategies in the search for high oil yields.
0

The Acyltransferase GPAT5 Is Required for the Synthesis of Suberin in Seed Coat and Root of Arabidopsis

Fred Beisson et al.Jan 1, 2007
Abstract Suberin and cutin are fatty acid– and glycerol-based plant polymers that act as pathogen barriers and function in the control of water and solute transport. However, despite important physiological roles, their biosynthetic pathways, including the acyl transfer reactions, remain hypothetical. We report the characterization of two suberin mutants (gpat5-1 and gpat5-2) of Arabidopsis thaliana GPAT5, encoding a protein with acyl-CoA:glycerol-3-phosphate acyltransferase activity. RT-PCR and β-glucuronidase–promoter fusion analyses demonstrated GPAT5 expression in seed coat, root, hypocotyl, and anther. The gpat5 plants showed a 50% decrease in aliphatic suberin in young roots and produced seed coats with a severalfold reduction in very long chain dicarboxylic acid and ω-hydroxy fatty acids typical of suberin but no change in the composition or content of membrane or storage glycerolipids or surface waxes. Consistent with their altered suberin, seed coats of gpat5 mutants had a steep increase in permeability to tetrazolium salts compared with wild-type seed coats. Furthermore, the germination rate of gpat5 seeds under high salt was reduced, and gpat5 seedlings had lower tolerance to salt stress. These results provide evidence for a critical role of GPAT5 in polyester biogenesis in seed coats and roots and for the importance of lipid polymer structures in the normal function of these organs.
0

Identification of acyltransferases required for cutin biosynthesis and production of cutin with suberin-like monomers

Yonghua Li‐Beisson et al.Nov 9, 2007
Cutin and suberin are the two major lipid-based polymers of plants. Cutin is the structural polymer of the epidermal cuticle, the waterproof layer covering primary aerial organs and which is often the structure first encountered by phytopathogens. Suberin contributes to the control of diffusion of water and solutes across internal root tissues and in periderms. The enzymes responsible for assembly of the cutin polymer are largely unknown. We have identified two Arabidopsis acyltransferases essential for cutin biosynthesis, glycerol-3-phosphate acyltransferase (GPAT) 4 and GPAT8. Double knockouts gpat4/gpat8 were strongly reduced in cutin and were less resistant to desiccation and to infection by the fungus Alternaria brassicicola . They also showed striking defects in stomata structure including a lack of cuticular ledges between guard cells, highlighting the importance of cutin in stomatal biology. Overexpression of GPAT4 or GPAT8 in Arabidopsis increased the content of C16 and C18 cutin monomers in leaves and stems by 80%. In order to modify cutin composition, the acyltransferase GPAT5 and the cytochrome P450-dependent fatty acyl oxidase CYP86A1, two enzymes associated with suberin biosynthesis, were overexpressed. When both enzymes were overexpressed together the epidermal polyesters accumulated new C20 and C22 ω-hydroxyacids and α,ω-diacids typical of suberin, and the fine structure and water-barrier function of the cuticle were altered. These results identify GPATs as partners of fatty acyl oxidases in lipid polyester synthesis and indicate that their cooverexpression provides a strategy to probe the role of cutin composition and quantity in the function of plant cuticles.
0
Citation369
0
Save
0

Oil content of Arabidopsis seeds: The influence of seed anatomy, light and plant-to-plant variation

Yonghua Li‐Beisson et al.Apr 5, 2006
Arabidopsis thaliana is frequently used as a model for the study of oilseed biology and metabolism. However, the very small seeds of Arabidopsis can complicate analysis of their oil content and influence the application of results to larger-seeded plants. Here, we describe how seed anatomy, light, and plant-to-plant variation influence the content and measurement of oil in Arabidopsis seeds. The anatomy of Arabidopsis and Brassica napus seeds were compared and the distribution of mass, oil and the fatty acid composition of different seed parts were determined. In Brassica, 90% of the seed oil resides in the cotyledons that contribute 74% of seed mass. By contrast, the values for Arabidopsis are 60% and 45%, respectively, with a higher fraction of the oil deposited in the radicle, hypocotyl, endosperm and seed coat. Growth of Arabidopsis plants with 600 micromol m(-2) s(-1) light resulted in a two-fold higher seed yield, a 40% increase in mass per seed and a 60% increase in oil per seed compared to growth at 100 micromol m(-2) s(-1). Factors that influence the analysis of oil content were evaluated. Intact-seed transmethylation followed by gas chromatography (GC) analysis provided reproducible analysis of Arabidopsis seed oil. However, plant-to-plant variation in oil content is large and we analyzed how this influences the ability to detect statistically valid changes in oil between different genotypes. These observations establish a reference data set on the fatty acid composition and distribution of mass and oil between tissues of Arabidopsis seeds that should help to predict the applicability of results obtained with Arabidopsis to other oilseeds.
0

Acyl-Lipid Metabolism

Yonghua Li‐Beisson et al.Jan 1, 2010
Acyl lipids in Arabidopsis and all other plants have a myriad of diverse functions. These include providing the core diffusion barrier of the membranes that separates cells and subcellular organelles. This function alone involves more than 10 membrane lipid classes, including the phospholipids, galactolipids, and sphingolipids, and within each class the variations in acyl chain composition expand the number of structures to several hundred possible molecular species. Acyl lipids in the form of triacylglycerol account for 35% of the weight of Arabidopsis seeds and represent their major form of carbon and energy storage. A layer of cutin and cuticular waxes that restricts the loss of water and provides protection from invasions by pathogens and other stresses covers the entire aerial surface of Arabidopsis. Similar functions are provided by suberin and its associated waxes that are localized in roots, seed coats, and abscission zones and are produced in response to wounding. This chapter focuses on the metabolic pathways that are associated with the biosynthesis and degradation of the acyl lipids mentioned above. These pathways, enzymes, and genes are also presented in detail in an associated website (ARALIP: http://aralip.plantbiology.msu.edu/). Protocols and methods used for analysis of Arabidopsis lipids are provided. Finally, a detailed summary of the composition of Arabidopsis lipids is provided in three figures and 15 tables.
5

Fatty acid photodecarboxylase is an ancient photoenzyme responsible for hydrocarbon formation in the thylakoid membranes of algae

Solène Moulin et al.Jun 23, 2020
ABSTRACT Fatty acid photodecarboxylase (FAP) is one of the three enzymes that require light for their catalytic cycle (photoenzymes). FAP has been first identified in the green microalga Chlorella variabilis NC64A and belongs an algae-specific subgroup of the glucose-methanol-choline oxidoreductase family. While the FAP from Chlorella and its Chlamydomonas reinhardtii homolog CrFAP have demonstrated in vitro activity, their activity and physiological function have not been studied in vivo . Besides, the conservation of FAP activity beyond green microalgae remains hypothetical. Here, using a Chlamydomonas FAP knockout line ( fap ), we show that CrFAP is responsible for the formation of 7-heptadecene, the only hydrocarbon present in this alga. We further show that CrFAP is associated to the thylakoids and that 90% of 7-heptadecene is recovered in this cell fraction. In the fap mutant, photosynthesis activity was not affected under standard growth conditions but was reduced after cold acclimation. A phylogenetic analysis including sequences from Tara Ocean identified almost 200 putative FAPs and indicated that FAP was acquired early after primary endosymbiosis. Within Bikonta, FAP was kept in photosynthetic secondary endosymbiosis lineages but absent in those that lost the plastid. Characterization of recombinant FAPs from various algal genera ( Nannochloropsis, Ectocarpus, Galdieria, Chondrus ) provided experimental evidence that FAP activity is conserved in red and brown algae and is not limited to unicellular species. These results thus indicate that FAP has been conserved during evolution of most algal lineages when photosynthesis was kept and suggest that its function is linked to photosynthetic membranes. One sentence summary FAP is present in thylakoids and conserved beyond green algae.
5
Citation5
0
Save
35

Alternative electron pathways of photosynthesis drive the algal CO2 concentrating mechanism

Adrien Burlacot et al.Feb 27, 2021
Abstract Global photosynthesis consumes ten times more CO 2 than net anthropogenic emissions, and microalgae account for nearly half of this consumption 1 . The great efficiency of algal photosynthesis relies on a mechanism concentrating CO 2 (CCM) at the catalytic site of the carboxylating enzyme RuBisCO, thus enhancing CO 2 fixation 2 . While many cellular components involved in the transport and sequestration of inorganic carbon (C i ) have been uncovered 3,4 , the way microalgae supply energy to concentrate CO 2 against a thermodynamic gradient remains elusive 4-6 . Here, by monitoring dissolved CO 2 consumption, unidirectional O 2 exchange and the chlorophyll fluorescence parameter NPQ in the green alga Chlamydomonas , we show that the complementary effects of cyclic electron flow and O 2 photoreduction, respectively mediated by PGRL1 and flavodiiron proteins, generate the proton motive force ( pmf ) required by C i transport across thylakoid membranes. We demonstrate that the trans-thylakoid pmf is used by bestrophin-like C i transporters and further establish that a chloroplast-to-mitochondria electron flow contributes to energize non-thylakoid C i transporters, most likely by supplying ATP. We propose an integrated view of the CCM energy supply network, describing how algal cells distribute photosynthesis energy to power different C i transporters, thus paving the way to the transfer of a functional algal CCM in plants towards improving crop productivity. One sentence summary Photosynthetic alternative electron flows and mitochondrial respiration drive the algal CO 2 concentrating mechanism
35
Citation4
0
Save
Load More